
Practical 2: The brms package
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We learn about the brms package and how to fit simple regression models.

Focus on: model output, convergence checks.
Also some basic infos on priors and model predictions.

rm(list=ls())
library("brms")
library("ggplot2")
library("bayesplot")
library("loo")
library("cowplot")
try(dev.off())

Example 1: Linear regression

We start with our deer population and the simple weight~age example

Question: What’s the average growth per year? (Slope in age)

Deterministic part: 𝜇 = 𝑎 + 𝑏 ⋅ 𝑎𝑔𝑒
Stochastic part: 𝑤𝑒𝑖𝑔ℎ𝑡 ∼ Normal(𝜇, 𝜎)
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data = data.frame(weight = c(104, 120, 118, 115, 99, 110, 102),
age = c(10, 12, 11, 11, 9, 11, 10))

plot(data$age, data$weight)
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Basic brms functions

Instead of lm(), we use the brm() function. The formula notation is designed to be identical
to lm, glm, lme4 (with few exceptions)

fit1 = brm(weight ~ age, data=data)

Looking at the summary table, we get a lot of infos:

If not specified otherwise, brms uses a normal distribution for the residuals:
family=gaussian().

brms by default uses 4 chains, each with 1000 warmup and 1000 sampling iterations.
The first thing you should look at are not parameter estimates, but Rhat and ESS.
These indicate if the MCMC converged and the posterior distribution is properly sampled.
Check if Rhat<1.01 and compare ESS to total number of draws.

summary(fit1)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: weight ~ age
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Data: data (Number of observations: 7)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 25.56 21.23 -17.04 68.48 1.00 2328 1800
age 7.96 1.99 3.87 11.97 1.00 2336 1834

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 4.31 1.90 2.18 9.12 1.00 1691 2047

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Additionally, you should do a visual inspection of the MCMC. You get a histogram and a
traceplot per parameter, which should look like a fuzzy caterpillar

plot(fit1)
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You can change the color palette if you like
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color_scheme_set("viridisA")
plot(fit1)
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and back to the default palette

color_scheme_set("blue")

You can also specify to display just some selected parameters. Parameters of the deterministic
model part begin with b_,the residual standard deviation is sigma

plot(fit1, variable=c("b_Intercept", "b_age"))
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plot(fit1, variable=c("sigma"))
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Histograms and traceplots can be plotted individually
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mcmc_trace(fit1, pars=c("b_Intercept", "b_age"))
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mcmc_hist(fit1, pars=c("b_Intercept", "b_age"))
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All the brms plots are done withh ggplot2, so you can extract & modify them

plot1 = mcmc_hist(fit1, pars=c("b_age"))
plot1 + xlim(-10,30)
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In this simple 1-predictor regression, model prediction are easily plotted vs data.
conditional_effects() is a powerful function which we will use throughout the course.
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plot(conditional_effects(fit1))
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plot(conditional_effects(fit1),
points=TRUE)
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Again, this generates a ggplot object which can be modified, with some options in the plot
function, or full ggplot options if you save the object

plot(conditional_effects(fit1),
points=TRUE, point_args=list(col="red"))
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Note that we here only plot the uncertainty of the deterministic model part mu, more on that
tomorrow. fitted() computes predictions of mu for each datapoint.

fitted(fit1) |> head()

Estimate Est.Error Q2.5 Q97.5
[1,] 105.18401 2.084831 101.18471 109.3446
[2,] 121.10918 3.186816 114.74524 127.2614
[3,] 113.14659 1.813679 109.52796 116.8500
[4,] 113.14659 1.813679 109.52796 116.8500
[5,] 97.22142 3.650626 90.06248 104.5488
[6,] 113.14659 1.813679 109.52796 116.8500

The brms package does not only offer model fitting via MCMC, it also has a lot of functions
for model analysis and is compatible with a lot of other packages (e.g. emmeans). We will
learn about some of these in the next days.
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methods(class="brmsfit")

[1] add_criterion add_ic as_draws_array as_draws_df as_draws_list as_draws_matrix as_draws_rvars as_draws
[9] as.array as.data.frame as.matrix as.mcmc autocor bayes_factor bayes_R2 bridge_sampler
[17] coef conditional_effects conditional_smooths control_params default_prior expose_functions family fitted
[25] fixef formula getCall hypothesis kfold log_lik log_posterior logLik
[33] loo_compare loo_epred loo_linpred loo_model_weights loo_moment_match loo_predict loo_predictive_interval loo_R2
[41] loo_subsample loo LOO marginal_effects marginal_smooths mcmc_plot model_weights model.frame
[49] nchains ndraws neff_ratio ngrps niterations nobs nsamples nuts_params
[57] nvariables pairs parnames plot post_prob posterior_average posterior_epred posterior_interval
[65] posterior_linpred posterior_predict posterior_samples posterior_smooths posterior_summary pp_average pp_check pp_mixture
[73] predict predictive_error predictive_interval prepare_predictions print prior_draws prior_summary psis
[81] ranef reloo residuals restructure rhat stancode standata stanplot
[89] summary update VarCorr variables vcov waic WAIC
see '?methods' for accessing help and source code

brms specifications & priors

When we compare the results to frequentist lm-model, the slope is pretty close but there’s ~0.5
difference in intercepts.

fixef(fit1)

Estimate Est.Error Q2.5 Q97.5
Intercept 25.558166 21.229873 -17.041362 68.47664
age 7.962584 1.990409 3.872543 11.97261

lm(weight ~ age, data=data) |> coef()

(Intercept) age
26.2 7.9

So why are they different? What about priors, did we specify any?

The brm() function has A TON OF specifications, which we did not specify in the simple
brm(weight~age, data=data) model, see the help function with ?brm. So brms uses default
values.
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?brm

E.g., we can specify the number of chains & iterations manually. Per default, half of the
iterations are used for warmup and are discared from the posterior sample.

fit2 = brm(weight ~ age,
data = data,
chains = 4,
iter = 5000

)

With a larger number of samples (iter), we expect a more accurate approximation of the
true posterior. Parameter means usually are quite correct even for low numbers, while outer
quantiles (e.g. 90%, 95%) require larger numbers of samples.

summary(fit2)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: weight ~ age
Data: data (Number of observations: 7)
Draws: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;

total post-warmup draws = 10000

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 26.25 21.61 -17.79 68.66 1.00 5245 4110
age 7.89 2.04 3.94 12.02 1.00 5257 4131

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 4.30 1.87 2.13 9.10 1.00 3621 3481

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

plot(fit2)
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We can check the defaults for any model with default_prior(). The model does not have to
be fitted, just model formula and data must be specified.

default_prior(weight ~ age,
data = data)

prior class coef group resp dpar nlpar lb ub source
(flat) b default
(flat) b age (vectorized)

student_t(3, 110, 11.9) Intercept default
student_t(3, 0, 11.9) sigma 0 default

Alternatively, you can display the priors of any fitted model. Since we had not specified any
priors, both outputs are the same here.

prior_summary(fit2)

prior class coef group resp dpar nlpar lb ub source
(flat) b default
(flat) b age (vectorized)

student_t(3, 110, 11.9) Intercept default
student_t(3, 0, 11.9) sigma 0 default
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This table can be a bit confusing, but look at the column class: b is for effects / slopes. The
first line tells you if there is a prior used for ALL effects, which is not the case (prior=flat).
Second line is the prior for a specific coefficient (coef=age), there’s also no prior specified.

But brms chooses a prior for Intercept and for the residual sdev sigma. These are automati-
cally generated from the mean and the spread of the response. Note that internally, the brms
machine uses mean-centered predictors. The Intercept parameter (and its prior) are based
on mean-centered variables. What’s displayed in the model summary is actually b_Intercept
which is the intercept parameter transformed to the original, non mean-centered scale.

A short form is presented in the summary for prior=TRUE

summary(fit2, prior=TRUE)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: weight ~ age
Data: data (Number of observations: 7)
Draws: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;

total post-warmup draws = 10000

Priors:
Intercept ~ student_t(3, 110, 11.9)
<lower=0> sigma ~ student_t(3, 0, 11.9)

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 26.25 21.61 -17.79 68.66 1.00 5245 4110
age 7.89 2.04 3.94 12.02 1.00 5257 4131

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 4.30 1.87 2.13 9.10 1.00 3621 3481

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Unless necessary, I would leave the brms defaults for Intercept & sigma. However, you should
choose a prior for the slope, which currently has none.

This would set a prior for all slopes (if you have >1 predictors)
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my_priors = prior(normal(5,1), class=b)

For setting a prior for a specific predictor, you specify it in coef. Since this model only has 1
predictor, both formulations are the same.

my_priors = prior(normal(5,1), class=b, coef=age)

fit3 = brm(weight ~ age,
prior = my_priors,
data = data,
chains = 4,
iter = 5000

)

summary(fit3, prior=TRUE)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: weight ~ age
Data: data (Number of observations: 7)
Draws: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;

total post-warmup draws = 10000

Priors:
b_age ~ normal(5, 1)
Intercept ~ student_t(3, 110, 11.9)
<lower=0> sigma ~ student_t(3, 0, 11.9)

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 49.08 10.00 30.68 69.54 1.00 6562 6790
age 5.74 0.93 3.84 7.48 1.00 6627 6763

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 4.59 1.75 2.36 9.06 1.00 4814 5306

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

13



We can draw prior & posterior in 1 plot by using mcmc_dens to plot the posterior distribution
and adding the prior distribution (which we specified with normal(5,1) earlier). We also draw
the old posterior without a slope-prior for comparison

plot3 = mcmc_dens(fit3, pars=c("b_age"))
plot3 = plot3 +
geom_function(fun=dnorm, args=list(mean=5, sd=1), colour="lightblue", linewidth=1.5) +
xlim(0,14) +
ggtitle("With prior normal(5,1)")

plot1 = mcmc_dens(fit1, pars=c("b_age"))
plot1 = plot1 +
xlim(0,14) +
ggtitle("Without prior")

plot_grid(plot3, plot1, nrow=2)
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Here we only have a small dataset and an informative prior (mean=5) changes the posterior
estimate of the slope.

Model analysis

Only after we checked MCMC convergence, we can go to the next step: Model evaluation /
model checking. How well does our model describe the data?

A classical visual tool is observed vs predicted, which also works if you have multiple predic-
tors.
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pp_check(fit3, "scatter_avg")

Using all posterior draws for ppc type 'scatter_avg' by default.
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bayes_R2 is the amount of explained variation. Its computation is a bit different from the
classical frequentist R2, but conceptually it means the same.

bayes_R2(fit3)

Estimate Est.Error Q2.5 Q97.5
R2 0.680979 0.129089 0.3647646 0.8557636

More on that tomorrow, e.g. checking model assumptions.

Inference

OK, so we know that (a) MCMC converged and (b) model describes the data well. Only now
can we make inference, i.e. quantitative statements about research questions. The summary
already tells us mean and 95% confidence intervals for the slope (growth per year of age).

Different Credible intervals can be chosen in the summary, e.g. 90%-CI. 90% of posterior
samples for slope were in this interval, we are 90% sure that the slope is in this interval.
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summary(fit3, prob=0.90)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: weight ~ age
Data: data (Number of observations: 7)
Draws: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;

total post-warmup draws = 10000

Regression Coefficients:
Estimate Est.Error l-90% CI u-90% CI Rhat Bulk_ESS Tail_ESS

Intercept 49.08 10.00 33.04 65.99 1.00 6562 6790
age 5.74 0.93 4.16 7.24 1.00 6627 6763

Further Distributional Parameters:
Estimate Est.Error l-90% CI u-90% CI Rhat Bulk_ESS Tail_ESS

sigma 4.59 1.75 2.56 7.96 1.00 4814 5306

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Or you can extract specific quantiles of parameter estimates. fixef means “fixed effects”
here.

fixef(fit3)

Estimate Est.Error Q2.5 Q97.5
Intercept 49.079222 9.9968130 30.675897 69.541695
age 5.741318 0.9277682 3.842057 7.475878

fixef(fit3, probs=c(0.25, 0.5, 0.75))

Estimate Est.Error Q25 Q50 Q75
Intercept 49.079222 9.9968130 42.043930 48.890111 55.640038
age 5.741318 0.9277682 5.127492 5.761661 6.395498

In a frequentist analysis you would want to know if the effect of age is “significant”:
p-values quantify the probability of observing such a pattern the data if the null hypothesis
(b_age=0) was true (p small -> reject H0).
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Here, we can just calculate the probability that the slope is positive, 𝑃(𝑏_𝑎𝑔𝑒 > 0), with the
hypothesis function. The column Post.Prob is the value of interest. It’s =1 because all
samples of slope were positive

hypothesis(fit3, "age>0")

Hypothesis Tests for class b:
Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star

1 (age) > 0 5.74 0.93 4.16 7.24 Inf 1 *
---
'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.

plot(hypothesis(fit3, "age>0"))

(age) > 0

4 6 8

You can test all kinds of hypotheses for the parameters! If we were interested in the question
if growth per year is bigger than 4, 𝑃(𝑏_𝑎𝑔𝑒 > 4), just put it in the hypothesis. The function
is quite powerful and can handle all kinds of transformations of parameters.

hypothesis(fit3, "age>4")

Hypothesis Tests for class b:
Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star

1 (age)-(4) > 0 1.74 0.93 0.16 3.24 27.01 0.96 *
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---
'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.

It’s transformed in the equivalent formulation age-4>0, and this is the probability distribution
which is actually plotted.

plot1 = plot(hypothesis(fit3, "age>4"), plot=FALSE)
plot1[[1]] + geom_vline(xintercept=0)

(age)−(4) > 0

0 2 4

The posterior probability is 0.96, which is also the integral (area under the curve) right of zero
(age-4>0)

Exercise 1: Survival rate

Population counts from different habitats before and after winter.

Question: Is the average survival rate bigger than 2/3 ?

Deterministic part: 𝜇 = 𝜃, 𝜃 ∈ [0, 1]
Stochastic part: 𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑𝑖 ∼ Binomial(𝑡𝑜𝑡𝑎𝑙𝑖, 𝜇)
Check the default prior!
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Choose a meaningful prior for the Intercept parameter, use lb=0, ub=1.
Fit the model & verify convergence.
Re-run the analysis for different priors.

data = data.frame(total = c(22,22,29,21,25,30,24,23,25,28),
survived = c(19,14,23,19,20,18,15,16,18,15))

default_prior(survived | trials(total) ~ 1,
family = binomial(link="identity"),
data = data)

Intercept ~ student_t(3, 18, 3)

This brms default prior choice does not make any sense (mean=18), since it is chosen from the
mean of the response survived (I guess??), while the parameter is actually a rate / probability
0 < 𝜃 < 1. Here brms messed up because we have overwritten the default link=“logit” of the
binomial distribution (again, I guess??). In most cases the default prior is fine, but better
check it for generalized linear models (see also part 5 on GLMs).

We use 3 different beta distribution priors (defined on interval [0,1]). Two shape parameters
𝑠1, 𝑠2 describe concentration to its mean 𝑠1/(𝑠1 + 𝑠2)
(1) beta(1,1) = uniform distribution
(2) beta(2,2) = weak prior, mean=0.5
(3) beta(20,20) = informative prior, mean=0.5

curve(dbeta(x,1,1), ylim=c(0,5), col="dodgerblue", lwd=2)
curve(dbeta(x,2,2), add=TRUE, col="dodgerblue3", lwd=2)
curve(dbeta(x,20,20), add=TRUE, , col="dodgerblue4", lwd=2)
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fit4 = brm(survived | trials(total) ~ 1,
family = binomial(link="identity"),
prior = prior(uniform(0,1), class=Intercept, lb=0, ub=1),
data = data)

fit5 = brm(survived | trials(total) ~ 1,
family = binomial(link="identity"),
prior = prior(beta(2,2), class=Intercept, lb=0, ub=1),
data = data)

fit6 = brm(survived | trials(total) ~ 1,
family = binomial(link="identity"),
prior = prior(beta(20,20), class=Intercept, lb=0, ub=1),
data = data)

summary(fit4)

Family: binomial
Links: mu = identity

Formula: survived | trials(total) ~ 1
Data: data (Number of observations: 10)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 0.71 0.03 0.65 0.77 1.00 1518 1824

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Here, the prior has only little effect on the outcome:

fixef(fit4)

Estimate Est.Error Q2.5 Q97.5
Intercept 0.708836 0.02882774 0.6515685 0.7655459
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fixef(fit5)

Estimate Est.Error Q2.5 Q97.5
Intercept 0.7077716 0.02844394 0.6496433 0.7619462

fixef(fit6)

Estimate Est.Error Q2.5 Q97.5
Intercept 0.6818631 0.02743494 0.6242358 0.7356291

Plot prior & posterior for the different models:

plot1 = mcmc_dens(fit4, pars=c("Intercept"))
plot1 = plot1 +
geom_function(fun=dbeta, args=list(1, 1), colour="lightblue", linewidth=1.5) +
xlim(0,1) +
ggtitle("Flat prior")

plot2 = mcmc_dens(fit5, pars=c("Intercept"))
plot2 = plot2 +
geom_function(fun=dbeta, args=list(2, 2), colour="lightblue", linewidth=1.5) +
xlim(0,1) +
ggtitle("Weakly informative prior")

plot3 = mcmc_dens(fit6, pars=c("Intercept"))
plot3 = plot3 +
geom_function(fun=dbeta, args=list(20, 20), colour="lightblue", linewidth=1.5) +
xlim(0,1) +
ggtitle("Informative prior")

plot_grid(plot1, plot2, plot3, nrow=3)
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We use the weakly informative prior model to test is survival rate is >2/3

hypothesis(fit5, "Intercept>2/3")

Hypothesis Tests for class b:
Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star

1 (Intercept)-(2/3) > 0 0.04 0.03 -0.01 0.09 11.31 0.92
---
'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.

plot1 = plot(hypothesis(fit5, "Intercept>2/3"), plot=FALSE)
plot1[[1]] + geom_vline(xintercept=0)

(Intercept)−(2/3) > 0

−0.05 0.00 0.05 0.10 0.15

We estimate a mean survival rate of 0.708 with a 95% credible interval [0.649,0.762]. Also,
posterior probability 𝑃(𝜃 > 2/3) = 0.92, which means we are only 92% certain that average
survival rate is larger than 2/3.

24


	Example 1: Linear regression
	Basic brms functions
	brms specifications & priors
	Model analysis
	Inference

	Exercise 1: Survival rate

