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Motivation

• Why using Stan?

• brms actually not a 3d printer: 

It‘s a very (!) big toolbox

But limited to implemented model classes

• If we want to fit custom statistical models, 

we need to code them ourselves



What is Stan?
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Some history

1700s Bayes‘ theorem, Laplace formalized it

Early 1800s Gauß: least squares, regression

Late 1800s to early 1900s 
Birth of modern statistics. Pearson, Fisher, Neyman … :
max. likelihood, hypothesis testing, design of experiments

Mid to late 1900s MCMC algorithms

2000s Computational tools for MCMC
BUGS, JAGS, Stan …

Today Convenient R interfaces 
brms, rstanarm …

Future

Bayes impractical
Restricted to simple cases 

Frequentism superseded Bayes
More practical in most cases 

Still a niche topic in statistics

Becoming more popular in sciences

Taught in gradschools

Becoming the default
instead of frequentism ??
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Who is Stan?

Named after Stanislaw Ulam (1909-1984)

• Mathematician, nuclear physicist, computer scientist

• Pioneer of Monte Carlo methods

• But also participant in the Manhattan Project

Biographical movie:

„Adventures of a Mathematician“ 2020

(mixed reviews, watch on own discretion)
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What is Stan?

• Started as research project at Columbia University 2011 (Andrew Gelman)

• Written in C++ (fast)

• No-U-turn sampler (NUTS), a version of HMC

• Hamiltonian Monte Carlo (HMC) requires derivatives of posterior

• Uses Automatic Differentiation

→ Adopted in many fields: science, research, medicine, industry, marketing, … 

https://mc-stan.org/install/
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Workflow

model
formula

Stan
code

C++
object

posterior

brms
package

rstan
package Stan
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Workflow

model
formula

Stan
code
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object
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package

rstan
package Stan

We started here



9

Workflow

model
formula

Stan
code

C++
object

posterior

brms
package

rstan
package Stan

Now we start here
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What is Stan code?

Text-object in your R-script Standalone .stan file (supported by RStudio)
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What is Stan code?

Standalone .stan file (supported by RStudio)Statistical model

Data 𝑥 Predictor

𝑦 Response

Priors 𝑎 ∼ Normal 0,1

𝑏 ∼ Normal 0,1

𝜎 ∼ Exponential 1

Det. part 𝜇𝑖 = 𝑎 + 𝑏 ⋅ 𝑥𝑖

Stoch. part 𝑦𝑖 ∼ Normal 𝜇𝑖 , 𝜎
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What is Stan code?

Always 3 blocks:

data{}, parameters{}, model{}

Optional: functions{}, generated quantities{},

transformed data{}, transformed parameters{}

Coding similar to R, but not always:

some structures different (vectors, arrays)

Each variable (data, parameter, etc)
must be declared with datatype and size

Each operation ends with a semicolon ;

Use //… to comment, not #…



13

Data block

Include number of observations 𝑁

𝑁 determines size of vectors for predictor and 

response variables

vector is always of datatype real

Count or integer responses must be declared as integers 

→ array[N] int y;

(Otherwise discrete distributions don‘t work)
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Parameters block

Declare all datatypes of model parameters

These parameters are sampled by MCMC

<lower=…> and <upper=…> set hard boundaries

Should only use them if model pars. are logically 

constrained, e.g. positive sdev
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Model block

(1) Prior statements (~) for model parameters

(2) Arithmetic operations to compute predictions

(3) Likelihood statement for response 𝑦𝑖 𝑖 = 1…𝑁
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Model block

(1) Prior statements (~) for model parameters

(2) Arithmetic operations to compute predictions

(3) Likelihood statement for response 𝑦𝑖 𝑖 = 1…𝑁

Many operations are vectorized, but a safe choice
is to use a for-loop over all N observations
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Model block

(1) Prior statements (~) for model parameters

(2) Arithmetic operations to compute predictions

(3) Likelihood statement for response 𝑦𝑖 𝑖 = 1…𝑁

Many operations are vectorized, but a safe choice
is to use a for-loop over all N observations

Can use intermediate steps and auxiliary variables.

These variables must be declared, but are not 

sampled 
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What is Stan code?

Recipe for computing prior 𝑝 𝜃 and likelihood 𝑝 𝑦 𝜃
and thus posterior 𝒑 𝜽 𝒑 𝒚 𝜽 of a sample 𝜃 = 𝑎, 𝑏, 𝜎

Stan does not know the model structure or 
what kind of model we are fitting (LM / GLM / LMM / NLM) 

Stan code: 
Data & parameter go in, posterior goes out

Stan sampler (NUTS) uses this 
to generate samples from posterior distribution

MCMC machinery very sophisticated & efficient:
Uses automatic differentiation to compute curvature
of posterior and to make good proposals for new samples



rstan, the R interface to Stan
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Example

Latitudinal gradient of plant size

Global database with:  

• log of plant height as response

• latitude as predictor (scaled)

Stochastic part: log ℎ𝑒𝑖𝑔ℎ𝑡 ∼ Normal(𝜇, 𝜎)

Deterministic part: 𝜇 = 𝑎 + 𝑏 ⋅ 𝑙𝑎𝑡
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How to start the engine

(1) Prepare data as named list

> stan.data = list(N = nrow(data),

x = scale(data$lat),

y = log(data$height) )

https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html

Names as 
in Stan code

„mymodel.stan“ file

https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html
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How to start the engine

(2) Compile model & run MCMC

> fit = stan(file = „mymodel.stan“,

data = stan.data)

> fit = stan(model_code = stan.code,

data = stan.data)

Additional arguments:

chains = …

iter = …

warmup = …

cores = …

https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html

„mymodel.stan“ file

https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html
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How to analyze results

https://cran.r-project.org/web/packages/rstan/vignettes/stanfit-objects.html

https://cran.r-project.org/web/packages/rstan/vignettes/stanfit-objects.html
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How to analyze results

From bayesplot plackage

> mcmc_combo(fit1)

mcmc_hist

mcmc_trace

mcmc_dens

...

https://mc-stan.org/bayesplot/reference/index.html#mcmc

https://mc-stan.org/bayesplot/reference/index.html#mcmc
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Posterior predictions  (as in conditional_effects)

Each posterior sample generates a regression line

> post = as.matrix(fit1)
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Posterior predictions  (as in conditional_effects)

Compute predictions for deterministic model part

x.pred = seq(xmin, xmax, length.out=100)

y.fit = matrix(NA, nrow=nrow(post), 

ncol=length(x.pred) )

for(i in 1:nrow(post)){

y.fit[i, ] = post[i,"a"] + post[i,"b"]*x.pred

}

Extract mean fitted curve and credible intervals

y.fit.mean= apply(y.fit, 2, function(x) mean(x)) 

y.fit.q05 = apply(y.fit, 2, function(x) quantile(x, probs=0.05)) 

y.fit.q95 = apply(y.fit, 2, function(x) quantile(x, probs=0.95)) 

Fitted



27

Posterior predictions (as in conditional_effects)

Compute predictions for stochastic model part

x.pred = seq(xmin, xmax, length.out=100)

y.pred = matrix(NA, nrow=nrow(post), 

ncol=length(x.pred) )

for(i in 1:nrow(post)){

y.pred[i, ] = rnorm(n = length(x.pred), 

mean = y.fit[i, ], 

sd = post[i,"sigma"] )

}

Extract mean predictions and prediction intervals

y.pred.mean= apply(y.pred, 2, function(x) mean(x)) 

y.pred.q05 = apply(y.pred, 2, function(x) quantile(x, probs=0.05)) 

y.pred.q95 = apply(y.pred, 2, function(x) quantile(x, probs=0.95)) 

Predicted
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Posterior predictions (residuals)

Compute predictions for deterministic model part

x.pred = stan.data$x

y.fit = matrix(NA, nrow=nrow(post), 

ncol=length(x.pred) )

for(i in 1:nrow(post)){

y.fit[i, ] = post[i,"a"] + post[i,"b"]*x.pred

}

Extract mean fitted & compute mean residuals

y.fit.mean= apply(y.fit, 2, function(x) mean(x))

residuals = stan.data$y – y.fit.mean
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Posterior predictions (pp_checks)

Compute predictions for stochastic model part

x.pred = stan.data$x

y.pred = matrix(NA, nrow=nrow(post), 

ncol=length(x.pred) )

for(i in 1:nrow(post)){

y.pred[i, ] = rnorm(n = length(x.pred), 

mean = y.fit[i, ], 

sd = post[i, "sigma"] )

}

Posterior predictive check:

Plot histogram of observed response 𝑦

vs. some histograms of predicted data 𝑦𝑝𝑟𝑒𝑑
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Model comparison with LOO

(1) in Stan code:

Need to save log-likelihood values 

of every datapoint 𝑖 = 1…𝑁

𝑝 𝑦𝑖 𝜃 = 𝑝 𝑦𝑖 𝜇, 𝜎 = 𝑝 𝑦𝑖 𝑎 + 𝑏𝑥𝑖 , 𝜎)

(2) in R: 

Extract log-likelihood from fitted model & compute LOO

> log_lik_1 = extract_log_lik(fit1)

> loo(log_lik_1)

https://cran.r-project.org/web/packages/loo/vignettes/loo2-with-rstan.html

https://cran.r-project.org/web/packages/loo/vignettes/loo2-with-rstan.html


More examples
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Generalized linear model

Example: Occurrence (yes/no) of a butterfly species 

versus temperature

Occurrence coded as 1/0 integers

Deterministic part logit 𝜇 = 𝑎 + 𝑏 ⋅ 𝑡𝑒𝑚𝑝

(linear model & link)      (implicit formulation)

Stochastic part 𝑜𝑐𝑐𝑢𝑟𝑟 ∼ Bernoulli(𝜇)
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Generalized linear model

Example: Occurrence (yes/no) of a butterfly species 

versus temperature

Occurrence coded as 1/0 integers

Deterministic part 𝜇 = inv_logit 𝑎 + 𝑏 ⋅ 𝑡𝑒𝑚𝑝

(linear model & link)      (explicit formulation)

Stochastic part 𝑜𝑐𝑐𝑢𝑟𝑟 ∼ Bernoulli(𝜇)
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Categorical predictor

Example: bird species richness vs landscape type

Deterministic part: 𝜇 = 𝑏 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒

Stochastic part: 𝑆 ~ Normal(𝜇, 𝜎)

4 means  𝑏𝐴𝑔𝑟𝑖 , 𝑏𝐵𝑎𝑢𝑥𝑖𝑡𝑒 , 𝑏𝐹𝑜𝑟𝑒𝑠𝑡 , 𝑏𝑈𝑟𝑏𝑎𝑛

Problem: Stan does not allow factors variables

→ Code factor 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 as integer 

(levels 1,2,3,4)
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ANOVA

Example: bird species richness vs landscape type

Deterministic part: 𝜇𝑖 = 𝑏𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒𝑖

Stochastic part: 𝑆𝑖 ~ Normal(𝜇𝑖 , 𝜎)

4 means 𝑏1, 𝑏2, 𝑏3, 𝑏4

Integer predictor 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 (levels 1,2,3,4)

used as index in Stan
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Random effects model

Example: bird species richness vs landscape type

Deterministic part: 𝜇𝑖 = 𝑏𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒𝑖

Hierarchical part 𝑏𝑗 ~ Normal 𝝁𝒃, 𝜎𝑏

Stochastic part: 𝑆𝑖 ~ Normal(𝜇𝑖 , 𝜎)

Replaced priors for 𝑏𝑗 → 𝜇𝑏, 𝜎𝑏 model parameters

Alternative: 𝜇𝑖 = 𝜇𝑏 +𝛿𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒𝑖

𝛿𝑗 ~ Normal 0, 𝜎𝑏



Summary
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What else?

Cool Stan stuff

• brms already pretty versatile … 

… but with Stan, theoretically no limit to model complexity

• Continuous latent variables (state-space models)

• Fit process-based models (population / community dynamics)

• Even differential equations (continuous dynamics)

But also limitations

• Deterministic models only

• Could have issues with non-smooth models

• No discrete parameters (workaround via marginalization possible)

• Gets slow with spatial autocorrelation
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NIMBLE

An alternative to Stan

• Replaces BUGS / JAGS nowadays

• Originates from the Ecology community (Perry de Valpine)

• Code is more slender, basically just a model block

• Modeling paradigm a bit different:

parameters, data, variables are nodes: “probabilistic graphical models”

• Discrete parameters allowed

Makes possible: HMMs, occupancy models, etc (discrete latent states)

• Also possible: non-exact / random simulation models (Sequential Monte Carlo)
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Summary

• Translate almost any statistical model into Stan code

• Not limited to model classes (LM, GLM, GLMM, GAM, etc)

• Fit Stan model from R

• Unfortunately, can‘t use fancy brms tools for posterior predictions

• Compute predictions manually in R from posterior distribution

• Huge reference manual: https://mc-stan.org/docs

• Active community: https://discourse.mc-stan.org/

https://mc-stan.org/docs
https://discourse.mc-stan.org/
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