
Introduction to

Bayesian Statistics

Part 7
Introduction to Stan

Benjamin Rosenbaum iDiv 2025

2

Motivation

• Why using Stan?

• brms actually not a 3d printer:

It‘s a very (!) big toolbox

But limited to implemented model classes

• If we want to fit custom statistical models,

we need to code them ourselves

What is Stan?

3

4

Some history

1700s Bayes‘ theorem, Laplace formalized it

Early 1800s Gauß: least squares, regression

Late 1800s to early 1900s
Birth of modern statistics. Pearson, Fisher, Neyman … :
max. likelihood, hypothesis testing, design of experiments

Mid to late 1900s MCMC algorithms

2000s Computational tools for MCMC
BUGS, JAGS, Stan …

Today Convenient R interfaces
brms, rstanarm …

Future

Bayes impractical
Restricted to simple cases

Frequentism superseded Bayes
More practical in most cases

Still a niche topic in statistics

Becoming more popular in sciences

Taught in gradschools

Becoming the default
instead of frequentism ??

5

Who is Stan?

Named after Stanislaw Ulam (1909-1984)

• Mathematician, nuclear physicist, computer scientist

• Pioneer of Monte Carlo methods

• But also participant in the Manhattan Project

Biographical movie:

„Adventures of a Mathematician“ 2020

(mixed reviews, watch on own discretion)

B
y
 L

o
s
 A

la
m

o
s
 N

a
tio

n
a
l L

a
b
o
ra

to
ry

h
ttp

s
://c

o
m

m
o
n
s
.w

ik
im

e
d
ia

.o
rg

/w
/in

d
e
x
.p

h
p
?
c
u
rid

=
2
6
0
6
9
3
6
9

6

What is Stan?

• Started as research project at Columbia University 2011 (Andrew Gelman)

• Written in C++ (fast)

• No-U-turn sampler (NUTS), a version of HMC

• Hamiltonian Monte Carlo (HMC) requires derivatives of posterior

• Uses Automatic Differentiation

→ Adopted in many fields: science, research, medicine, industry, marketing, …

https://mc-stan.org/install/

7

Workflow

model
formula

Stan
code

C++
object

posterior

brms
package

rstan
package Stan

8

Workflow

model
formula

Stan
code

C++
object

posterior

brms
package

rstan
package Stan

We started here

9

Workflow

model
formula

Stan
code

C++
object

posterior

brms
package

rstan
package Stan

Now we start here

10

What is Stan code?

Text-object in your R-script Standalone .stan file (supported by RStudio)

11

What is Stan code?

Standalone .stan file (supported by RStudio)Statistical model

Data 𝑥 Predictor

𝑦 Response

Priors 𝑎 ∼ Normal 0,1

𝑏 ∼ Normal 0,1

𝜎 ∼ Exponential 1

Det. part 𝜇𝑖 = 𝑎 + 𝑏 ⋅ 𝑥𝑖

Stoch. part 𝑦𝑖 ∼ Normal 𝜇𝑖 , 𝜎

12

What is Stan code?

Always 3 blocks:

data{}, parameters{}, model{}

Optional: functions{}, generated quantities{},

transformed data{}, transformed parameters{}

Coding similar to R, but not always:

some structures different (vectors, arrays)

Each variable (data, parameter, etc)
must be declared with datatype and size

Each operation ends with a semicolon ;

Use //… to comment, not #…

13

Data block

Include number of observations 𝑁

𝑁 determines size of vectors for predictor and

response variables

vector is always of datatype real

Count or integer responses must be declared as integers

→ array[N] int y;

(Otherwise discrete distributions don‘t work)

14

Parameters block

Declare all datatypes of model parameters

These parameters are sampled by MCMC

<lower=…> and <upper=…> set hard boundaries

Should only use them if model pars. are logically

constrained, e.g. positive sdev

15

Model block

(1) Prior statements (~) for model parameters

(2) Arithmetic operations to compute predictions

(3) Likelihood statement for response 𝑦𝑖 𝑖 = 1…𝑁

16

Model block

(1) Prior statements (~) for model parameters

(2) Arithmetic operations to compute predictions

(3) Likelihood statement for response 𝑦𝑖 𝑖 = 1…𝑁

Many operations are vectorized, but a safe choice
is to use a for-loop over all N observations

17

Model block

(1) Prior statements (~) for model parameters

(2) Arithmetic operations to compute predictions

(3) Likelihood statement for response 𝑦𝑖 𝑖 = 1…𝑁

Many operations are vectorized, but a safe choice
is to use a for-loop over all N observations

Can use intermediate steps and auxiliary variables.

These variables must be declared, but are not

sampled

18

What is Stan code?

Recipe for computing prior 𝑝 𝜃 and likelihood 𝑝 𝑦 𝜃
and thus posterior 𝒑 𝜽 𝒑 𝒚 𝜽 of a sample 𝜃 = 𝑎, 𝑏, 𝜎

Stan does not know the model structure or
what kind of model we are fitting (LM / GLM / LMM / NLM)

Stan code:
Data & parameter go in, posterior goes out

Stan sampler (NUTS) uses this
to generate samples from posterior distribution

MCMC machinery very sophisticated & efficient:
Uses automatic differentiation to compute curvature
of posterior and to make good proposals for new samples

rstan, the R interface to Stan

19

20

Example

Latitudinal gradient of plant size

Global database with:

• log of plant height as response

• latitude as predictor (scaled)

Stochastic part: log ℎ𝑒𝑖𝑔ℎ𝑡 ∼ Normal(𝜇, 𝜎)

Deterministic part: 𝜇 = 𝑎 + 𝑏 ⋅ 𝑙𝑎𝑡

21

How to start the engine

(1) Prepare data as named list

> stan.data = list(N = nrow(data),

x = scale(data$lat),

y = log(data$height))

https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html

Names as
in Stan code

„mymodel.stan“ file

https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html

22

How to start the engine

(2) Compile model & run MCMC

> fit = stan(file = „mymodel.stan“,

data = stan.data)

> fit = stan(model_code = stan.code,

data = stan.data)

Additional arguments:

chains = …

iter = …

warmup = …

cores = …

https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html

„mymodel.stan“ file

https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html

23

How to analyze results

https://cran.r-project.org/web/packages/rstan/vignettes/stanfit-objects.html

https://cran.r-project.org/web/packages/rstan/vignettes/stanfit-objects.html

24

How to analyze results

From bayesplot plackage

> mcmc_combo(fit1)

mcmc_hist

mcmc_trace

mcmc_dens

...

https://mc-stan.org/bayesplot/reference/index.html#mcmc

https://mc-stan.org/bayesplot/reference/index.html#mcmc

25

Posterior predictions (as in conditional_effects)

Each posterior sample generates a regression line

> post = as.matrix(fit1)

26

Posterior predictions (as in conditional_effects)

Compute predictions for deterministic model part

x.pred = seq(xmin, xmax, length.out=100)

y.fit = matrix(NA, nrow=nrow(post),

ncol=length(x.pred))

for(i in 1:nrow(post)){

y.fit[i,] = post[i,"a"] + post[i,"b"]*x.pred

}

Extract mean fitted curve and credible intervals

y.fit.mean= apply(y.fit, 2, function(x) mean(x))

y.fit.q05 = apply(y.fit, 2, function(x) quantile(x, probs=0.05))

y.fit.q95 = apply(y.fit, 2, function(x) quantile(x, probs=0.95))

Fitted

27

Posterior predictions (as in conditional_effects)

Compute predictions for stochastic model part

x.pred = seq(xmin, xmax, length.out=100)

y.pred = matrix(NA, nrow=nrow(post),

ncol=length(x.pred))

for(i in 1:nrow(post)){

y.pred[i,] = rnorm(n = length(x.pred),

mean = y.fit[i,],

sd = post[i,"sigma"])

}

Extract mean predictions and prediction intervals

y.pred.mean= apply(y.pred, 2, function(x) mean(x))

y.pred.q05 = apply(y.pred, 2, function(x) quantile(x, probs=0.05))

y.pred.q95 = apply(y.pred, 2, function(x) quantile(x, probs=0.95))

Predicted

28

Posterior predictions (residuals)

Compute predictions for deterministic model part

x.pred = stan.data$x

y.fit = matrix(NA, nrow=nrow(post),

ncol=length(x.pred))

for(i in 1:nrow(post)){

y.fit[i,] = post[i,"a"] + post[i,"b"]*x.pred

}

Extract mean fitted & compute mean residuals

y.fit.mean= apply(y.fit, 2, function(x) mean(x))

residuals = stan.data$y – y.fit.mean

29

Posterior predictions (pp_checks)

Compute predictions for stochastic model part

x.pred = stan.data$x

y.pred = matrix(NA, nrow=nrow(post),

ncol=length(x.pred))

for(i in 1:nrow(post)){

y.pred[i,] = rnorm(n = length(x.pred),

mean = y.fit[i,],

sd = post[i, "sigma"])

}

Posterior predictive check:

Plot histogram of observed response 𝑦

vs. some histograms of predicted data 𝑦𝑝𝑟𝑒𝑑

30

Model comparison with LOO

(1) in Stan code:

Need to save log-likelihood values

of every datapoint 𝑖 = 1…𝑁

𝑝 𝑦𝑖 𝜃 = 𝑝 𝑦𝑖 𝜇, 𝜎 = 𝑝 𝑦𝑖 𝑎 + 𝑏𝑥𝑖 , 𝜎)

(2) in R:

Extract log-likelihood from fitted model & compute LOO

> log_lik_1 = extract_log_lik(fit1)

> loo(log_lik_1)

https://cran.r-project.org/web/packages/loo/vignettes/loo2-with-rstan.html

https://cran.r-project.org/web/packages/loo/vignettes/loo2-with-rstan.html

More examples

31

32

Generalized linear model

Example: Occurrence (yes/no) of a butterfly species

versus temperature

Occurrence coded as 1/0 integers

Deterministic part logit 𝜇 = 𝑎 + 𝑏 ⋅ 𝑡𝑒𝑚𝑝

(linear model & link) (implicit formulation)

Stochastic part 𝑜𝑐𝑐𝑢𝑟𝑟 ∼ Bernoulli(𝜇)

33

Generalized linear model

Example: Occurrence (yes/no) of a butterfly species

versus temperature

Occurrence coded as 1/0 integers

Deterministic part 𝜇 = inv_logit 𝑎 + 𝑏 ⋅ 𝑡𝑒𝑚𝑝

(linear model & link) (explicit formulation)

Stochastic part 𝑜𝑐𝑐𝑢𝑟𝑟 ∼ Bernoulli(𝜇)

34

Categorical predictor

Example: bird species richness vs landscape type

Deterministic part: 𝜇 = 𝑏 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒

Stochastic part: 𝑆 ~ Normal(𝜇, 𝜎)

4 means 𝑏𝐴𝑔𝑟𝑖 , 𝑏𝐵𝑎𝑢𝑥𝑖𝑡𝑒 , 𝑏𝐹𝑜𝑟𝑒𝑠𝑡 , 𝑏𝑈𝑟𝑏𝑎𝑛

Problem: Stan does not allow factors variables

→ Code factor 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 as integer

(levels 1,2,3,4)

35

ANOVA

Example: bird species richness vs landscape type

Deterministic part: 𝜇𝑖 = 𝑏𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒𝑖

Stochastic part: 𝑆𝑖 ~ Normal(𝜇𝑖 , 𝜎)

4 means 𝑏1, 𝑏2, 𝑏3, 𝑏4

Integer predictor 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 (levels 1,2,3,4)

used as index in Stan

36

Random effects model

Example: bird species richness vs landscape type

Deterministic part: 𝜇𝑖 = 𝑏𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒𝑖

Hierarchical part 𝑏𝑗 ~ Normal 𝝁𝒃, 𝜎𝑏

Stochastic part: 𝑆𝑖 ~ Normal(𝜇𝑖 , 𝜎)

Replaced priors for 𝑏𝑗 → 𝜇𝑏, 𝜎𝑏 model parameters

Alternative: 𝜇𝑖 = 𝜇𝑏 +𝛿𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒𝑖

𝛿𝑗 ~ Normal 0, 𝜎𝑏

Summary

37

38

What else?

Cool Stan stuff

• brms already pretty versatile …

… but with Stan, theoretically no limit to model complexity

• Continuous latent variables (state-space models)

• Fit process-based models (population / community dynamics)

• Even differential equations (continuous dynamics)

But also limitations

• Deterministic models only

• Could have issues with non-smooth models

• No discrete parameters (workaround via marginalization possible)

• Gets slow with spatial autocorrelation

39

NIMBLE

An alternative to Stan

• Replaces BUGS / JAGS nowadays

• Originates from the Ecology community (Perry de Valpine)

• Code is more slender, basically just a model block

• Modeling paradigm a bit different:

parameters, data, variables are nodes: “probabilistic graphical models”

• Discrete parameters allowed

Makes possible: HMMs, occupancy models, etc (discrete latent states)

• Also possible: non-exact / random simulation models (Sequential Monte Carlo)

40

Summary

• Translate almost any statistical model into Stan code

• Not limited to model classes (LM, GLM, GLMM, GAM, etc)

• Fit Stan model from R

• Unfortunately, can‘t use fancy brms tools for posterior predictions

• Compute predictions manually in R from posterior distribution

• Huge reference manual: https://mc-stan.org/docs

• Active community: https://discourse.mc-stan.org/

https://mc-stan.org/docs
https://discourse.mc-stan.org/

41

Further reading

Johnson, A. A., Ott, M. Q., Dogucu, M. (2021). Bayes Rules! CRC Press. https://www.bayesrulesbook.com/

Kery, M. & Kellner, F. (2024): Applied Statistical Modelling for Ecologists. Elsevier.

Korner-Nievergelt, F., Roth, T., Von Felten, S., Guélat, J., Almasi, B. and Korner-Nievergelt, P. (2024). Bayesian
Data Analysis in Ecology Using Linear Models with R and Stan. https://tobiasroth.github.io/BDAEcology/

Lambert, B. (2018). A Student’s Guide to Bayesian Statistics. Sage. https://ben-lambert.com/bayesian/

Stan Development Team (2025). Stan Documentation. https://mc-stan.org/docs/

https://www.bayesrulesbook.com/
https://tobiasroth.github.io/BDAEcology/
https://ben-lambert.com/bayesian/
https://mc-stan.org/docs/

