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This lecture

• Random grouping factors

• Random effects

• Fixed & random effects

– Random intercepts

– Random intercepts and slopes

• Multiple random grouping factors

• Continuous correlation structures

• Summary
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Assumptions for linear models

1. Independent observations.

Systematic differences in 𝑦 are because of 𝑥 !

2. Trend of 𝑦 follows (linear) prediction model

𝜇 𝑥 = 𝑎 + 𝑏 ⋅ 𝑥

3. Residuals follow normal distribution

𝜀 ~ Normal 0, 𝜎

4. Constant variance (standard deviation 𝜎) 

across whole range of 𝑥
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Assumptions for linear models

When are residuals not independent ?

Study design: 𝑁 observations have been sampled in groups

→ There is a categorical predictor with 𝑀 levels  (𝑀 < 𝑁)

→ Each level / group contains multiple observations, 

these are no independent replicates !

→ Maybe structural (or random) differences 

between (unobserved) conditions of these groups

→ Still want to make inference on whole population
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Random grouping factors

Examples:

Site: Data collected at multiple locations

Year: Data collected ~same time in different years

Observer: Data collected by different researchers

Individual: Multiple measurements on the same test object

Unit: Multiple experimental units like chambers / tanks

Species: Data on higher level (e.g. family) contains

multiple species
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Word salad !!

Hierarchical 
model

Multilevel 
model

Mixed 
model

Mixed effects 
model

Random effects 
model Random intercepts 

model

Partial pooling 
model



Random effects
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Example

• Measured weight of 𝑁 = 200 viper snakes

• Data collected on 𝑀 = 9 different sites across France

• Also measured length, but we’re not using it for now

Q: What is the correct statistical model for species mean weight ? 

brm( weight ~ 1 )  ?

→ No, observations not independent

brm( weight ~ site ) ?

→ No, does not estimate overall weight (just site-specific means)
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(1) Complete pooling

Model: 𝑦𝑖 = 𝑎 + 𝜀𝑖 𝑖 = 1…𝑁

𝜀𝑖 ∼ Normal 0, 𝜎

Priors: 𝑎 ∼ Normal 150,10

• Ignore categorical predictor 𝑠𝑖𝑡𝑒

• Information is completely pooled across all levels

• Fit joint intercept 𝑎 only

• 𝑎 is given a prior

mass ~ 1
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(2) No pooling

Model: 𝑦𝑖 = 𝑎𝑠𝑖𝑡𝑒 𝑖 + 𝜀𝑖 𝑖 = 1…𝑁

𝜀𝑖 ∼ Normal 0, 𝜎

Priors: 𝑎𝑗 ∼ Normal 150,10 𝑗 = 1…𝑀

• Include categorical predictor 𝑠𝑖𝑡𝑒 (ANOVA)

• No information is shared across levels

• Fit independent intercepts 𝑎1…𝑎𝑀

• Each 𝑎𝑗 is given a prior

(here they are identical, but could also be different)

mass ~ site
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(3) Partial pooling

Model: 𝑦𝑖 = 𝒂𝒔𝒊𝒕𝒆 𝒊 + 𝜀𝑖 𝑖 = 1…𝑁

𝜀𝑖 ∼ Normal 0, 𝜎

𝒂𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝝁𝒂, 𝝈𝒂 𝒋 = 𝟏…𝑴

Priors: 𝝁𝒂 ∼ Normal 150,10

𝝈𝒂 ∼ Exponential(1/10)

• Replace prior distributions by a joint distribution 

of the site-specific intercepts  𝑎1…𝑎𝑀

• Their mean 𝜇𝑎 and sdev 𝜎𝑎 are parameters

and are estimated with all others by MCMC

• These “hyperparameters” 𝜇𝑎, 𝜎𝑎 are given priors

mass ~ 1 + (1|site)

𝝁𝒂
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(3) Partial pooling

Model: 𝑦𝑖 = 𝝁𝒂 + 𝜹𝒔𝒊𝒕𝒆 𝒊 + 𝜀𝑖 𝑖 = 1…𝑁

𝜀𝑖 ∼ Normal 0, 𝜎

𝜹𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝒂 𝒋 = 𝟏…𝑴

Priors: 𝝁𝒂 ∼ Normal 150,10

𝝈𝒂 ∼ Exponential(1/10)

• Replaced 𝑎𝑗 = 𝜇𝑎 + 𝛿𝑗

• Effects 𝛿𝑗 = 𝑎𝑗 − 𝜇𝑎 describe each site‘s

deviation from overall mean 𝜇𝑎

• Identical model, just rearrangement of coefficients

mass ~ 1 + (1|site)

𝝁𝒂
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Comparison

vs. complete pooling  mass ~ 1 

Uncertainty of 𝜇𝑎 in  mass~1 is smaller.

Wrongly assumes 𝑁 = 200 independent obs.

Uncertainty of 𝜇𝑎 in  mass~1+(1|site) correct.

Informed by 𝑀 = 9 sites.

vs. no pooling  mass ~ site

Site-specific means 𝑎𝑗 of  mass~1+(1|site)

closer to overall mean 𝜇𝑎 than in  mass~site

„Shrinkage” of parameters

mass ~ 1 
mass ~ site
mass ~ 1 + (1|site)

𝝁𝒂
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Random effects

Random effects 𝜹𝒋 = 𝒂𝒋 − 𝝁𝒂 describe each site‘s

deviation from overall mean 𝜇𝑎 with sdev 𝜎𝑎

Assumption: normally distributed

(Bayesian 3d printer: could also be other distribution,

e.g. positive lognormal distribution for 𝑎𝑗)

Hyperparameters 𝜇𝑎, 𝜎𝑎 informed by all 9 sites

→ Some information is shared / pooled

→ Borrowing strength

→ For unbalanced designs this improves prediction

in levels with few observations.
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Random effects

Random effects 𝜹𝒋 = 𝒂𝒋 − 𝝁𝒂 describe each site‘s

deviation from overall mean 𝜇𝑎 with sdev 𝜎𝑎

This part of the likelihood  𝜹𝒋 ∼ Normal 0, 𝜎𝑎

would be maximized for 𝜎𝑎 → 0 and all 𝛿𝑗 → 0

But the residuals’ likelihood  𝑦𝑖 ∼ Normal 𝜇𝑎 + 𝜹𝒔𝒊𝒕𝒆 𝒊 , 𝜎

would decrease if all 𝛿𝑗 were close to 0 (worse model fit)

→ Partial pooling model is a compromise

between small random effects (on site-level)

and good model fit (on observation level)
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Variance partitioning

Overall variance of the data is estimated on different levels

𝑠total
2 = 𝑠among

2 + 𝑠within
2

Site-level (among) 𝝈𝒂

Explains site-specific deviation from overall mean 𝜇𝑎

Observation-level (within) 𝝈

Explains each data point‘s deviation from site-mean 𝑎𝑗

(All the randomness in the data which is not caused by 

site-level differences)

𝜇𝑎

𝑎1

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6

𝑎2𝜎𝑎

𝜎 𝜎

…

…
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𝝈 →

𝝁𝒂 →

𝝈𝒂 →

> brm(mass ~ 1 + (1|site), …)



Fixed and random effects
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Fixed & random effects

In previous example, we were interested in a

correct statistical model for the overall intercept

→ „Fixed effect“ 𝝁𝒂

Variation among sites was not our focus,

but we wanted to account for non-independence 

of observations 

→ „Random effect“ 𝜹𝒋 (𝑗 = 1…𝑀)

Fitted an intercept-only model 

with random intercepts (site)

mass ~ 1 + (1|site)
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Example

• Measured weight of 𝑁 = 200 viper snakes

• Data collected on 𝑀 = 9 different sites across France

• Also measured length (continuous predictor)

Q: Correct statistical regression model for weight vs. length? 

brm( weight ~ length )  ?

→ No, observations not independent

brm( weight ~ length*site ) ?

→ No, does not estimate overall slope (just site-specific regressions)
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(1) Complete pooling

Model: 𝑦𝑖 = 𝑎 + 𝑏 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝜀𝑖 𝑖 = 1…𝑁

𝜀𝑖 ∼ Normal 0, 𝜎

Priors: 𝑎 ∼ Normal 150,10

𝑏 ∼ Normal 10,5

• Ignore categorical predictor 𝑠𝑖𝑡𝑒

• Information is completely pooled across all levels

• Fit joint intercept 𝑎 & slope 𝑏 only

• 𝑎, 𝑏 are given a prior

mass ~ length
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(2) No pooling

Model: 𝑦𝑖 = 𝑎𝑠𝑖𝑡𝑒 𝑖 + 𝑏𝑠𝑖𝑡𝑒 𝑖 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝜀𝑖

𝜀𝑖 ∼ Normal 0, 𝜎

Priors: 𝑎𝑗 ∼ Normal 150,10 𝑗 = 1…𝑀

𝑏𝑗 ∼ Normal 10,5

• Include categorical predictor 𝑠𝑖𝑡𝑒 (ANCOVA)

• No information is shared across levels

• Fit independent intercepts 𝑎1…𝑎𝑀 & slopes 𝑏1…𝑏𝑀

• Each 𝑎𝑗 & 𝑏𝑗 is given a prior

(here they are identical, but could also be different)

mass ~ length*site
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(2) No pooling

Model: 𝑦𝑖 = 𝑎𝑠𝑖𝑡𝑒 𝑖 + 𝑏𝑠𝑖𝑡𝑒 𝑖 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝜀𝑖

𝜀𝑖 ∼ Normal 0, 𝜎

Priors: 𝑎𝑗 ∼ Normal 150,10 𝑗 = 1…𝑀

𝑏𝑗 ∼ Normal 10,5

• Include categorical predictor 𝑠𝑖𝑡𝑒 (ANCOVA)

• No information is shared across levels

• Fit independent intercepts 𝑎1…𝑎𝑀 & slopes 𝑏1…𝑏𝑀

• Each 𝑎𝑗 & 𝑏𝑗 is given a prior

(here they are identical, but could also be different)

mass ~ length*site
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(3) Partial pooling: Random intercepts

Model: 𝑦𝑖 = 𝒂𝒔𝒊𝒕𝒆 𝒊 + 𝑏 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝜀𝑖

𝜀𝑖 ∼ Normal 0, 𝜎

𝒂𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝝁𝒂, 𝝈𝒂 𝑗 = 1…𝑀

Priors: 𝑏𝑗 ∼ Normal 10,5

𝝁𝒂 ∼ Normal 150,10

𝝈𝒂 ∼ Exponential(1/10)

Random effects: 𝑎1…𝑎𝑀 site-specific intercepts

Fixed effects: 𝜇𝑎 joint intercept

𝑏 joint slope

mass ~ length + (1|site)

Marginal predictions: 𝜇𝑎 + 𝑏 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ
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(3) Partial pooling: Random intercepts

Model: 𝑦𝑖 = (𝝁𝒂 + 𝜹𝒔𝒊𝒕𝒆 𝒊 ) + 𝑏 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝜀𝑖

𝜀𝑖 ∼ Normal 0, 𝜎

𝜹𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝒂 𝑗 = 1…𝑀

Priors: 𝑏𝑗 ∼ Normal 10,5

𝝁𝒂 ∼ Normal 150,10

𝝈𝒂 ∼ Exponential(1/10)

Random effects: 𝛿1…𝛿𝑀 intercepts deviation

Fixed effects: 𝜇𝑎 joint intercept

𝑏 joint slope

mass ~ length + (1|site)

Marginal predictions: 𝜇𝑎 + 𝑏 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ
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(3) Partial pooling: Random intercepts

Model: 𝑦𝑖 = (𝝁𝒂 + 𝜹𝒔𝒊𝒕𝒆 𝒊 ) + 𝑏 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝜀𝑖

𝜀𝑖 ∼ Normal 0, 𝜎

𝜹𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝒂 𝑗 = 1…𝑀

Priors: 𝑏𝑗 ∼ Normal 10,5

𝝁𝒂 ∼ Normal 150,10

𝝈𝒂 ∼ Exponential(1/10)

Random effects: 𝛿1…𝛿𝑀 intercepts deviation

Fixed effects: 𝜇𝑎 joint intercept

𝑏 joint slope

mass ~ length + (1|site)

Conditional predictions: 𝑎𝑗 + 𝑏 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ
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(3) Partial pooling: Random intercepts

Model: 𝑦𝑖 = (𝝁𝒂 + 𝜹𝒔𝒊𝒕𝒆 𝒊 ) + 𝑏 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝜀𝑖

𝜀𝑖 ∼ Normal 0, 𝜎

𝜹𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝒂 𝑗 = 1…𝑀

Priors: 𝑏𝑗 ∼ Normal 10,5

𝝁𝒂 ∼ Normal 150,10

𝝈𝒂 ∼ Exponential(1/10)

Random effects: 𝛿1…𝛿𝑀 intercepts deviation

Fixed effects: 𝜇𝑎 joint intercept

𝑏 joint slope

mass ~ length + (1|site)

Conditional predictions: 𝑎𝑗 + 𝑏 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ
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(4) Partial pooling: Random slopes & intercepts

Model: 𝑦𝑖 = 𝒂𝒔𝒊𝒕𝒆 𝒊 + 𝒃𝒔𝒊𝒕𝒆 𝒊 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝜀𝑖

𝜀𝑖 ∼ Normal 0, 𝜎

𝒂𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝝁𝒂, 𝝈𝒂 𝑗 = 1…𝑀

𝒃𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝝁𝒃, 𝝈𝒃

Priors 𝝁𝒂 ∼ Normal 150,10

𝝁𝒃 ∼ Normal 10,5

𝝈𝒂 ∼ Exponential(1/10)

𝝈𝒃 ∼ Exponential(1/5)

Random effects: 𝑎1…𝑎𝑀 , 𝑏1…𝑏𝑀
Fixed effects: 𝜇𝑎, 𝜇𝑏 joint intercept & slope

mass ~ length + (length|site)

Marginal predictions: 𝜇𝑎 + 𝜇𝑏 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ
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(4) Partial pooling: Random slopes & intercepts

Model: 𝑦𝑖 = (𝝁𝒂 + 𝜹𝒔𝒊𝒕𝒆 𝒊 ) + (𝝁𝒃 + 𝜸𝒔𝒊𝒕𝒆 𝒊 ) ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝜀𝑖

𝜀𝑖 ∼ Normal 0, 𝜎

𝜹𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝒂 𝑗 = 1…𝑀

𝜸𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝒃

Priors 𝝁𝒂 ∼ Normal 150,10

𝝁𝒃 ∼ Normal 10,5

𝝈𝒂 ∼ Exponential(1/10)

𝝈𝒃 ∼ Exponential(1/5)

Random effects: 𝛿1…𝛿𝑀 , 𝛾1…𝛾𝑀
Fixed effects: 𝜇𝑎, 𝜇𝑏 joint intercept & slope

mass ~ length + (length|site)

Marginal predictions: 𝜇𝑎 + 𝜇𝑏 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ
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(4) Partial pooling: Random slopes & intercepts

Model: 𝑦𝑖 = (𝝁𝒂 + 𝜹𝒔𝒊𝒕𝒆 𝒊 ) + (𝝁𝒃 + 𝜸𝒔𝒊𝒕𝒆 𝒊 ) ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝜀𝑖

𝜀𝑖 ∼ Normal 0, 𝜎

𝜹𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝒂 𝑗 = 1…𝑀

𝜸𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝒃

Priors 𝝁𝒂 ∼ Normal 150,10

𝝁𝒃 ∼ Normal 10,5

𝝈𝒂 ∼ Exponential(1/10)

𝝈𝒃 ∼ Exponential(1/5)

Random effects: 𝛿1…𝛿𝑀 , 𝛾1…𝛾𝑀
Fixed effects: 𝜇𝑎, 𝜇𝑏 joint intercept & slope

mass ~ length + (length|site)

Conditional predictions: 𝑎𝑗 + 𝑏𝑗 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ
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(4) Partial pooling: Random slopes & intercepts

Model: 𝑦𝑖 = (𝝁𝒂 + 𝜹𝒔𝒊𝒕𝒆 𝒊 ) + (𝝁𝒃 + 𝜸𝒔𝒊𝒕𝒆 𝒊 ) ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝜀𝑖

𝜀𝑖 ∼ Normal 0, 𝜎

𝜹𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝒂 𝑗 = 1…𝑀

𝜸𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝒃

Priors 𝝁𝒂 ∼ Normal 150,10

𝝁𝒃 ∼ Normal 10,5

𝝈𝒂 ∼ Exponential(1/10)

𝝈𝒃 ∼ Exponential(1/5)

Random effects: 𝛿1…𝛿𝑀 , 𝛾1…𝛾𝑀
Fixed effects: 𝜇𝑎, 𝜇𝑏 joint intercept & slope

mass ~ length + (length|site)

Conditional predictions: 𝑎𝑗 + 𝑏𝑗 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ
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(4) Partial pooling: Random slopes & intercepts

Model: 𝑦𝑖 = (𝝁𝒂 + 𝜹𝒔𝒊𝒕𝒆 𝒊 ) + (𝝁𝒃 + 𝜸𝒔𝒊𝒕𝒆 𝒊 ) ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝜀𝑖

𝜀𝑖 ∼ Normal 0, 𝜎

𝜹𝒋
𝜸𝒋

∼ 𝐌𝐕𝐍𝐨𝐫𝐦𝐚𝐥
𝟎
𝟎

,
𝝈𝒂
𝟐 𝝆𝝈𝒂𝝈𝒃

𝝆𝝈𝒂𝝈𝒃 𝝈𝒃
𝟐

𝑗 = 1…𝑀

Priors 𝝁𝒂 ∼ Normal 150,10

𝝁𝒃 ∼ Normal 10,5

𝝈𝒂 ∼ Exponential(1/10)

𝝈𝒃 ∼ Exponential(1/5)

𝝆 ∼ Uniform(0,1)

 Random intercepts & slopes not independent:

Multivariate normal distributions with 

zero mean and 2x2 covariance matrix Σ

 Correlation coefficient 𝜌
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Comparison

Uncertainty of 𝑎, 𝑏 is smaller (overly confident). Uncertainty of 𝜇𝑎, 𝜇𝑏 is correct.

Wrongly assumes 𝑁 = 200 independent obs.

mass ~ length + (length|site)mass ~ length
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Comparison

Regressions for each site independent. Intercepts & slopes draws to joint means
„Shrinkage“

mass ~ length + (length|site)mass ~ length*site

Here, 
difference is 
very weak
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Comparison

Regressions for each site independent. Intercepts & slopes draws to joint means
„Shrinkage“

mass ~ length + (length|site)mass ~ length*site

Here, 
difference is 
very weak
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Comparison: unbalanced design

High uncertainty in sites with few data. Borrowing strength from other sites. 
→ Better predictions!

mass ~ length + (length|site)mass ~ length*site
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Categorical 
predictor

Continuous 
predictor

Random intercepts Random intercepts & „slopes“

Harrison et al 
(2020) PeerJ
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𝝈 →

𝝁𝒂 →

𝝈𝒂 →

𝝁𝒃 →

𝝈𝒃 →
𝝆 →

> brm(mass ~ length + (length|site), …)



Multiple grouping factors
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Example

• Measured weight of 𝑁 = 200 viper snakes

• Data collected on 𝑀 = 9 different sites across France

• Collection was done in 𝑳 = 𝟓 sampling campaigns

Can be fully crossed (each campaign visited all sites)

or partially crossed (not all campaigns visited all sites).

→ Specify additive (independent) random effects 

for grouping factor site and grouping factor campaign
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Crossed random effects

Model: 𝑦𝑖 = 𝝁𝒂 + 𝜹𝒔𝒊𝒕𝒆 𝒊 + 𝜸𝒄𝒂𝒎𝒑𝒂𝒊𝒈𝒏 𝒊 + 𝜀𝑖

𝜀𝑖 ∼ Normal 0, 𝜎

𝜹𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝜹 𝒋 = 𝟏…𝑴

𝜸𝒌 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝜸 𝒌 = 𝟏…𝑳

Priors: 𝝁𝒂 ∼ Normal 150,10

𝝈𝜹 ∼ Exponential(1/10)

𝝈𝜸 ∼ Exponential(1/10)

mass ~ 1 + (1|site) + (1|campaign)

 Site-effect

 Campaign-effect

 Overall mean is the only fixed effect 
in this basic example
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Variance partitioning

Overall variance of the data is estimated on different levels

𝑠total
2 = 𝑠among

2 + 𝑠within
2

Site-campaign-level (among) 𝝈𝜹 + 𝝈𝜸

Explains additive deviations from overall mean 𝜇𝑎

caused by site (𝜎𝛿) and campaign (𝜎𝛾)

Observation-level (within) 𝝈

Explains each data point‘s deviation from

site-campaign-mean 𝜇𝑎 + 𝛿𝑗 + 𝛾𝑘

(All the randomness in the data which is not caused by site-level differences)

𝜇𝑎

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6

𝜎𝛿 + 𝜎𝛾

𝜎 𝜎

…

…

𝜇𝑎 + 𝛿𝑗 + 𝛾𝑘
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𝝈 →

𝝁𝒂 →

𝝈𝜸 →

𝝈𝜹 →

> brm(mass ~ 1 + (1|site) + (1|campaign), …)
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Example

• Measured weight of 𝑁 = 200 viper snakes

• Data collected on 𝑀 = 9 different sites across France

• Sites belong to 𝑳 = 𝟑 distinct mountain regions

Every site uniquely belongs to one region.

At least one region has 2 or more sites.

→ Specify nested random effects

for factor site in factor region
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Nested random effects

Model: 𝑦𝑖 = 𝝁𝒂 + 𝜸𝒓𝒆𝒈𝒊𝒐𝒏 𝒊 + 𝜹𝒓𝒆𝒈𝒊𝒐𝒏:𝒔𝒊𝒕𝒆 𝒊 + 𝜀𝑖

𝜀𝑖 ∼ Normal 0, 𝜎

𝜸𝒌 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝒌 𝒌 = 𝟏…𝑳

𝜹𝒋 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝜹 𝒋 = 𝟏…𝑴

Priors: 𝝁𝒂 ∼ Normal 150,10

𝝈𝜸 ∼ Exponential(1/10)

𝝈𝜹 ∼ Exponential(1/10)

mass ~ 1 + (1|region/site)
mass ~ 1 + (1|region) + (1|region:site)

 Regional-effect

 Site-effect in region

Automatically
uses unique
region:site

combinations
with 𝑀 levels



47

Variance partitioning

Overall variance of the data is estimated on different levels

𝑠total
2 = 𝑠among 𝑟𝑒𝑔𝑖𝑜𝑛𝑠

2 +𝑠among 𝑠𝑖𝑡𝑒𝑠 in region
2 +𝑠within

2

Regional-level 𝝈𝜸

Explains deviations from overall mean 𝜇𝑎

Site-level 𝝈𝜹

Explains deviations from regional mean 𝜇𝑎+𝛾𝑘

Observation-level (within) 𝝈

Data point deviations from site-mean 𝜇𝑎 + 𝛾𝑘 + 𝛿𝑗

…

𝑦5 𝑦6 𝑦7 𝑦8

𝑠2,4𝑠2,3

…

𝜇𝑎

𝑟1

𝑠1,1 𝑠1,2

𝑟2
𝜎𝛾

𝜎𝛿

𝜇𝑎 + 𝛾𝑘

𝑦1 𝑦2

𝜇𝑎 + 𝛾𝑘 + 𝛿𝑗

𝑦3 𝑦4

𝜎𝜎𝜎𝜎

…

𝜎𝛿
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𝝈 →

𝝁𝒂 →

𝝈𝜸 →

𝝈𝜹 →

> brm(mass ~ 1 + (1|region/site), …) 
> brm(mass ~ 1 + (1|region) + (1|region:site), …)   



Schnielzeth & Nakagawa (2013) MEE
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Nested or crossed?

Nested designs 

(1|F1/F2) just short for  (1|F1)+(1|F1:F2) 

If nested factor F2 is uniquely labelled

(levels of F2 and F1:F2 identical)

this is same as crossed (1|F1)+(1|F2)

Crossed designs

No need to be fully crossed for additive model.

(1|F1)+(1|F2) works for partially crossed, too.

(1|F1/F2)

(1|F1)+(1|F2)

(1|F1)+(1|F2)



Continuous correlation structures
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Example

• Measured weight of 𝑁 = 200 viper snakes

• Data collected on 𝑀 = 9 different sites in the same region

Instead of using site as categorical grouping predictor,

we could use location (longitude & latitude) as continuous

„grouping“ predictor.

„Everything is related to everything else, 

but near things are more related than distant things.” (Tobler)

→ Specify spatial autocorrelation model.



52

Example

• Measured weight of 𝑁 = 200 viper snakes

• Data collected on 𝑀 = 9 different sites in the same region

Instead of using site as categorical grouping predictor,

we could use location (longitude & latitude) as continuous

„grouping“ predictor.

„Everything is related to everything else, 

but near things are more related than distant things.” (Tobler)

→ Specify spatial autocorrelation model.

Longitude

L
a
ti
tu

d
e

Distance [km]

C
o
rr

e
la

ti
o
n

Correlation function
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Spatial autocorrelation model

Model: 𝑦𝑖 = 𝜇𝑎 + 𝜺𝒊

𝜺 ∼ 𝐌𝐕𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝟐𝑹

Correlation: 𝑹𝒊𝒋 = 𝐞𝐱𝐩 −𝐝𝐢𝐬𝐭 𝒊, 𝒋 /𝜽

Priors: 𝜇𝑎 ∼ Normal 150,10

𝝈 ∼ Exponential(1/10)

𝜽 ∼ Exponential(1/100)

• Model for spatial autocorrelation of residuals.

• Unfortunately not (yet?) implemented in brms.

→ Code in Stan, or use alternative models.

𝑁-dimensional vector of residuals 𝜺 : 

multivariate normal distribution

 with 𝑁 ×𝑁 correlation matrix 𝑹 & variance 𝝈𝟐

 Correlation decreases with 

spatial distance of datapoints 𝑖, 𝑗

 Range parameter of spatial autocorrelation
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Fixed residual correlation

Model: 𝑦𝑖 = 𝜇𝑎 + 𝜺𝒊

𝜺 ∼ 𝐌𝐕𝐍𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝟐𝑹

Correlation: 𝑹𝒊𝒋 provided by user

Priors: 𝜇𝑎 ∼ Normal 150,10

𝝈 ∼ Exponential(1/10)

• Not ideal, since correlation range 𝜃 is not 

estimated jointly with the other parameters.

• But it‘s a fast and efficient solution.

 Choose range 𝜃 yourself and compute, e.g.,

𝑅𝑖𝑗 = exp −dist 𝑖, 𝑗 /𝜃 from data.

Obtain 𝜃 from variogram.

brm( y ~ 1 + fcor(R),
data  = … , 
data2 = list(R=R) )
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More „adventures in covariance“ (McElreath)

brms has a couple of options:

• Fixed correlation model

• Gaussian process regression

• Generalized additive models (GAM) 

→ but see mgcv package

• Adjacency matrix 𝑅𝑖𝑗 = ቊ
1 𝑖, 𝑗 neighbours
0 otherwise

• … 

You can model autocorrelations 

• spatial

• temporal

• spatio-temporal

• phylogenetic 

Many of these models can get very slow 

even for moderate 𝑁. 

→ INLA is designed for that. Very efficient !



Summary
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Random or fixed effects ?

You are interested in overall means / 

overall effects, but must account for 

non-independence in data?

→ site as a random grouping factor

~ 1 + (1|site) random intercepts

~ x + (1|site) random intercepts

~ x + (x|site) random intercepts & slopes

You are interested in differences in means / 

differences in effects between sites?

→ site as fixed effect

~ site ANOVA

~ x + site ANCOVA (diff. in intercepts)

~ x * site ANCOVA (diff. in intercepts & slopes)

Classical / oldschool interpretation

Modern / relaxed interpretation

Can use random factor models for both to overcome difficulties like unbalanced / heterogeneous data
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What‘s Bayesian about it ?

• Sometimes lme4 just does not converge !

• Correct quantification of uncertainties on all levels.

• Works for all numbers of groups or numbers of obs.

Already 2-level grouping factor is OK.

• Interpretation “easy” through levels of priors

• Frequentist assumption: Random effects drawn from 

a larger population of other, unmeasured groups

• Bayes: no such limitation

• Non-normal distribution of random effects?

→ Bayes (Stan) can handle that!

?
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Summary

• Bayesian stats does not free you from model assumptions !

• If residuals are not independent, you must account for it.

• Otherwise: Fixed effects wrongly confident, CIs too narrow

• Thinking hard about your data will reveal 

random effects structure.

• Formula notation just as in lme4.

• Combine any kind of (generalized) linear (or nonlinear) 

model with discrete (random) grouping factors and/or

continuous correlation structure … 

• … in one R-package !!

The Bayesian 3D printer

Source: stockcake.com
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