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This lecture

« Random grouping factors
« Random effects

* Fixed & random effects
— Random intercepts

— Random intercepts and slopes

Multiple random grouping factors

Continuous correlation structures

* Summary



Assumptions for linear models

1. Indep observations.

Systematic di because of x ! o

2. Trend of y follows (linear) prediction model
2.5~

ux)=a+b-x

3. Residuals follow normal distribution 0.0

¢ ~ Normal(0, o)

-2.5-

4. Constant variance (standard deviation o)

across whole range of x



Assumptions for linear models

When are residuals not independent ?

Study design: N observations have been sampled in groups

- There is a categorical predictor with M levels (M < N)

- Each level / group contains multiple observations,

these are no independent replicates !

- Maybe structural (or random) differences

between (unobserved) conditions of these groups

- Still want to make inference on whole population




Random grouping factors

Examples:

Site:

Year:
Observer:
Individual:
Unit:

Species:

Data collected at multiple locations

Data collected ~same time in different years
Data collected by different researchers

Multiple measurements on the same test object
Multiple experimental units like chambers / tanks

Data on higher level (e.g. family) contains

multiple species




Word salad !!




Random effects



Example

« Measured weight of N = 200 viper snakes

« Data collected on M = 9 different sites across France

« Also measured length, but we’re not using it for now

Q: What is the correct statistical model for species mean weight ?

brm( weight ~ 1 ) ?

- No, observations not independent

brm( weight ~ site ) ?

- No, does not estimate overall weight (just site-specific means)



(1) Complete pooling

Model: y; =a+ ¢ i=1..N
g; ~ Normal(0, o)

Priors: a ~ Normal(150,10)

« Ignore categorical predictor site

Information is completely pooled across all levels

Fit joint intercept a only

* a is given a prior

mass
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120

mass ~ 1
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(2) No pooling

Model: Vi = asite(i) + & i=1..N
g ~ Normal(0, o)

Priors:  a; ~ Normal(150,10) j=1..M

« Include categorical predictor site (ANOVA)

* No information is shared across levels

Fit independent intercepts a, ...ay

Each a; is given a prior

(here they are identical, but could also be different)

mass

130 140 150 160 170 180

120

mass ~ site
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(3) Partial pooling

Model:  y; = Qgjrei) + & i=1..N
g ~ Normal(0, o)
a; ~ Normal(u,,0,) j=1..M
Priors:  p, ~ Normal(150,10)

o, ~ Exponential(1/10)

» Replace prior distributions by a joint distribution

of the site-specific intercepts a; ...ay

« Their mean u, and sdev g, are parameters

and are estimated with all others by MCMC

* These “hyperparameters” u,, o, are given priors

mass

130 140 150 160 170 180

120

mass

~

o

1 + (1})site)

-

{

I

Ha
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(3) Partial pooling

Model: y; =p, + 0gjte) +& 1=1..N
g ~ Normal(0, o)
d; ~ Normal(0,0,) j=1..M
Priors:  p, ~ Normal(150,10)

o, ~ Exponential(1/10)

* Replaced a; = i, + 6

- Effects §; = a; — u, describe each site's
deviation from overall mean pu,

 Identical model, just rearrangement of coefficients

mass

130 140 150 160 170 180

120

mass

~

ol e

1 + (1]site)

-
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|
L
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()

Ha
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Comparison

mass ~ 1
mass ~ site
mass ~ 1 + (1|site)

vs. complete pooling mass ~ 1

180
|

Uncertainty of u, in mass~1 is smaller.

170
|

Wrongly assumes N = 200 independent obs.

160
|
**i
e INP—

L
Uncertainty of u, in mass~1+(1|site) correct. § 3 | ¢ H ﬁ o *
Informed by M = 9 sites. £ 7 E " # . H ﬁ
F - . ¢
— o

130
|
. ~ 1173
LI )

vs. no pooling mass ~ site

120
|

Site-specific means a; of mass~1+(1|site)
closer to overall mean u, than in mass~site

~Shrinkage” of parameters
13



Random effects

Random effects 6; = a; — 1, describe each site's

deviation from overall mean u, with sdev g,

Assumption: normally distributed

(Bayesian 3d printer: could also be other distribution,

e.g. positive lognormal distribution for a;)

Hyperparameters u,, o, informed by all 9 sites
- Some information is shared / pooled
- Borrowing strength

- For unbalanced designs this improves prediction

in levels with few observations.

|

-30

-20

| | |
-10 0 10

Random effects §;

I
20

|
30
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Random effects

Random effects 6; = a; — 1, describe each site's

deviation from overall mean u, with sdev g,

This part of the likelihood &; ~ Normal(0, g,)

would be maximized for o, — 0 and all §; - 0

But the residuals’ likelihood y; ~ Normal(ug + 8size(i), 0)

would decrease if all 5]- were close to 0 (worse model fit)

- Partial pooling model is a compromise
between small random effects (on site-level)

and good model fit (on observation level)

-30

-20

W
| | |
-10 0 10

Random effects §;

I
20

|
30
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Variance partitioning

Overall variance of the data is estimated on different levels

2 — 2 2
Stotal — Samong + Swithin Ug

Site-level (among) o, / \

Explains site-specific deviation from overall mean p,

Observation-level (within) o \

Explains each data point's deviation from site-mean a; yio Y2 s Yo Ys Ve
(All the randomness in the data which is not caused by o o

site-level differences)

16



> brm(mass ~ 1 + (1|site), ..)

Family: gaussian
Links: mu = identity; sigma = identity
Formula: mass ~ 1 + (1 | site)
Data: df (Number of observations: 200)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Multilevel Hyperparameters:

~site (Number of levels: 9)
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Taill ESS
o, > sd(Intercept) 11.64 3.26 6.99  19.70 1.01 814 1353

Regression Coefficients:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Taill ESS
Ha - Intercept 149.01 3.91 141.05 156.81 1.00 777 1038

Further Distributional Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
o > sigma 11.02 0.57 9.97 12.20 1.00 2527 2566




Fixed and random effects



Fixed & random effects

In previous example, we were interested in a

correct statistical model for the overall intercept

-> ,Fixed effect™ u,

Variation among sites was not our focus,
but we wanted to account for non-independence

of observations

- »Random effect® §; (j=1..M)

Fitted an intercept-only model

with random intercepts (site)

mass

130 140 150 160 170 180

120

mass

~ 1 + (1]site)

o

-

{

|
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{

I
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Example

« Measured weight of N = 200 viper snakes

« Data collected on M = 9 different sites across France

« Also measured length (continuous predictor)

Q: Correct statistical regression model for weight vs. length?

brm( weight ~ length ) ?

- No, observations not independent

brm( weight ~ length*site ) ?

- No, does not estimate overall slope (just site-specific regressions)

20



(1) Complete pooling

Model: y;, =a+b-length; +¢; i=1..N
g; ~ Normal(0, o)
Priors: a ~ Normal(150,10)

b ~ Normal(10,5)

Ignore categorical predictor site

Information is completely pooled across all levels

Fit joint intercept a & slope b only

- a,b are given a prior

mass

1754

mass ~ length

21



(2) No pooling

mass ~ length*site

1 2 3
Model:  y; = Qgite(i) T Dsitei) - length; + &;

g; ~ Normal(0, o) / _41‘"‘/ ‘—-’/

Priors:  a; ~ Normal(150,10) j=1..M
bj ~ Normal(10,5) 2 200+
E 150- M
 Include categorical predictor site (ANCOVA) 7 8 9

* No information is shared across levels

Fit independent intercepts a; ...ay & slopes by ...by, / *'*‘/ M

1 D 1 -
Each a; & b; is given a prior |ength

(here they are identical, but could also be different)
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(2) No pooling

Model: Vi = asite(i) + bsite(i) . lengthi + &
g ~ Normal(0, o)
Priors:  a; ~ Normal(150,10) j=1..M

bj ~ Normal(10,5)

 Include categorical predictor site (ANCOVA)

* No information is shared across levels

Fit independent intercepts a; ...ay & slopes by ...by,

Each a; & b; is given a prior

(here they are identical, but could also be different)

mass

225-

200-

175-

150~

125~

mass ~ length*site

length

site

O 000 ~N o U A W N =
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(3) Partial pooling: Random intercepts

mass ~ length + (1|site)
Model: y; = agireiy) + b - length; + ¢
g ~ Normal(0, o)

175+

a; ~ Normal(u,, 0,) j=1..M

Priors:  b; ~ Normal(10,5)

mass

i, ~ Normal(150,10)

o, ~ Exponential(1/10)

125+

Random effects: a, ...ay site-specific intercepts

Fixed effects: Ua joint intercept
Marginal predictions: u, + b - length
b joint slope

24



(3) Partial pooling: Random intercepts

Model: y; = (g + gite(i)) + b - length; + ¢
g ~ Normal(0, o)
d; ~ Normal(0,0,) j=1..M
Priors:  b; ~ Normal(10,5)
i, ~ Normal(150,10)

o, ~ Exponential(1/10)

Random effects: §,..6, intercepts deviation
Fixed effects: Ua joint intercept

b joint slope

mass ~ length + (1]|site)

175+

Marginal predictions: u, + b - length

25



(3) Partial pooling: Random intercepts

Model: y; = (g + gite(i)) + b - length; + ¢
g ~ Normal(0, o)
d; ~ Normal(0,0,) j=1..M
Priors:  b; ~ Normal(10,5)

i, ~ Normal(150,10)

o, ~ Exponential(1/10)
Random effects: §,..6, intercepts deviation
Fixed effects: Ua joint intercept

b joint slope

mass

200
175
150
125

200
175
150
125

200
175
150
125

mass ~ length + (1|site)
1 2 3
4 5 6
) ° .""’irf,aa”' ’dS"Jﬁ;:;””
1/ - il

7 8 9
- | F
J ..- ]
A04 23 A0 d23 A0 2
length

Conditional predictions: a; + b - length
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(3) Partial pooling: Random intercepts

Model: y; = (g + gite(i)) + b - length; + ¢
g ~ Normal(0, o)
d; ~ Normal(0,0,) j=1..M
Priors:  b; ~ Normal(10,5)

i, ~ Normal(150,10)

o, ~ Exponential(1/10)
Random effects: §,..6, intercepts deviation
Fixed effects: Ua

joint intercept

b joint slope

200~

180~

140 -

120~

mass ~ length + (1]|site)

1 0 1 2 3
length

Conditional predictions: a; + b - length

site

W 00 N O U M W N =
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(4) Partial pooling: Random slopes & intercepts

Model:  ¥; = @site(i) + Dsite(i) - length; + ¢
g; ~ Normal(0, o)
a; ~ Normal(iy, 0,)  j=1..M
b; ~ Normal(uy, 63) g
Priors  pu, ~ Normal(150,10) 150~

uy, ~ Normal(10,5)
o, ~ Exponential(1/10)
o, ~ Exponential(1/5)

Random effects: a, ...ay, b, ...by
Fixed effects: Uar Up joint intercept & slope

200~

125-

mass ~ length + (length|site)

length

Marginal predictions: u, + up - length
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(4) Partial pooling: Random slopes & intercepts

mass ~ length + (length|site)
Model: Vi = (ﬂa + 6site(i)) + (ﬂb + YSite(i)) : lengthi + & 200~
g; ~ Normal(0, o)

d; ~ Normal(0,0,) j=1..M g

Y; ~ Normal(0, o})

mass

Priors  p, ~ Normal(150,10) 150-
up ~ Normal(10,5)
o, ~ Exponential(1/10) 125-

o, ~ Exponential(1/5)

length

Random effects: §;..60y, V1 - Yu Marginal predictions: u, + up - length

Fixed effects: Uar Up joint intercept & slope
29



(4) Partial pooling: Random slopes & intercepts

Model:

Vi = (ﬂa + 6site(i)) + (ﬂb + YSite(i)) : lengthi + &

g; ~ Normal(0, o)

d; ~ Normal(0,0,) j=1..M

Y; ~ Normal(0, o})

Priors  pu, ~ Normal(150,10)

uy, ~ Normal(10,5)

o, ~ Exponential(1/10)

o, ~ Exponential(1/5)

Random effects: 6; ...
Fixed effects:

Ua, Up

Sy Y1 VM

joint intercept & slope

mass ~ length + (length|site)

2 5

200~

ETZZ,/ i /

7 8 9
200-
10 1 -
Iength

Conditional predictions: a; + b; - length
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(4) Partial pooling: Random slopes & intercepts

225-

Model: Vi = (ﬂa + 6site(i)) + (ﬂb + YSite(i)) : lengthi + &

g; ~ Normal(0, o) 200

d; ~ Normal(0,0,) j=1..M

175-

Y; ~ Normal(0, o})

mass

Priors  pu, ~ Normal(150,10)

150~

uy, ~ Normal(10,5)

o, ~ Exponential(1/10) 125-

o, ~ Exponential(1/5)

Random effects: 6, ...0y, V1 ---VYu
Fixed effects: Uar Up joint intercept & slope

mass ~ length + (length|site)

s

g 0 i 2 3
length

Conditional predictions: a; + b; - length

site

O 000 ~N o U A W N =
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(4) Partial pooling: Random slopes & intercepts

Model:  y; = (Ua + 8sitei)) + (U + Vsite(i)) * length; + &;

g; ~ Normal(0, o)

2
Oq P00

2 < Random intercepts & slopes not independent:
po,0p Op

(%) ~ MVNormal ((g) ,

j=1..M

Multivariate normal distributions with
zero mean and 2x2 covariance matrix X

Priors  u, ~ Normal(150,10)
Up ~ Normal(10,5)
o, ~ Exponential(1/10)
o, ~ Exponential(1/5)

p ~ Uniform(0,1) & Correlation coefficient p



mass

Comparison

mass ~ length

200~

175+

Uncertainty of a, b is smaller (overly confident).
Wrongly assumes N = 200 independent obs.

mass

200~

175+

mass ~ length + (length|site)

1 0 1 2 3

Uncertainty of ug,, 1y is correct.
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Comparison Here,

difference is
very weak

mass ~ length*site
1 2 3

/ et /

7 8 9
200-
50- -
10 1 2 3 4001 2 3 401 2 3
length

Regressions for each site independent.

mass ~ length + (length|site)

1 2 B

AT MBS Rt
E/,,.//

7 8 9
200~
50- -
10 1 2 3 001 2 3 101 2 3
length

Intercepts & slopes draws to joint means

~Shrinkage"
34



mass

Comparison

mass ~ length*site
200~
180-
160 -
140 -

120~

-1 0 1 2 3
length

Regressions for each site independent.

site

O 000 ~N o U A W N

—_

mass

200~

180-

160-

140 -

120~

]
length

mass ~ length + (length|site)

site

O 000 ~N o U A W N

Intercepts & slopes draws to joint means

~Shrinkage"

—_
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Comparison: unbalanced design

mass ~ length*site mass ~ length + (length|site)
1 2 3 1 2 3
210~ 210~
180 - 5 180 - 5
150~ —""A/‘ / 150~ —‘""/ /
120- 120-
90 - 90 -
4 5 6 4 5 6
210- 210-
3180-/ W ’./ 3180'/ W /
E‘ISO- E‘ISO-
120~ 120~
90 - 90 -
7 8 9 7 8 9
210~ 210~
180 - 180 -
150-/ M - I 150-/ M /
[ L] [ L]
120~ 120~
90- v 0 0 B 90- v 0
10 1 2 3 -1 001 2 3 10 1 2 3 10 1 2 3 -1 001 2 3 10 1 2 3
length length
High uncertainty in sites with few data. Borrowing strength from other sites.

- Better predictions! e




Categorical
predictor

Continuous
predictor

Response

Response

| |
N - o - N w

-

Random intercepts

o -
T op—

Treatment

o
® ]
Q %0 2 O..

00 02 04 06 08 1.0
Covariate

Response

Response

Random intercepts & ,slopes"

| |
N -t o -t n w

—

® o
s Bl

I | | | | |

00 02 04 06 08 1.0
Covariate

Harrison et al
(2020) Peerd

37



> brm(mass ~ length + (length|site), ..)

Family: gaussian
Links: mu = identity; sigma = identity
Formula: mass ~ length + (length | site)
Data: df (Number of observations: 200)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Op

N2\ 2\ 2

Multilevel Hyperparameters:
~site (Number of levels: 9)
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS

sd(Intercept) 12.36 3.45 7.39 20.97 1.00 1269
sd(length) 4.65 1.57 2.52 8.72 1.00 1154
cor(Intercept,length) 0.05 0.33 -0.58 0.64 1.00 1937

U 2
Hp

N7

Regression Coefficients:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Taill ESS
Intercept 148.95 3.88 141.48 156.81 1.00 1265 2055
length 10.43 1.69 7.11 13.81 1.00 1318 1461

o>

Further Distributional Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Taill ESS
sigma 5.28 0.27 4.79 5.86 1.00 3411 2993
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Multiple grouping factors



Example

« Measured weight of N = 200 viper snakes
« Data collected on M = 9 different sites across France

 Collection was done in L = 5 sampling campaigns

Can be fully crossed (each campaign visited all sites)

or partially crossed (not all campaigns visited all sites).

- Specify additive (independent) random effects

for grouping factor site and grouping factor campaign

40



Crossed random effects

Model:  y; = Ha + Ssite(i) T Vcampaign(i) T &
g; ~ Normal(0, o)
d; ~ Normal(0, o) j=1..M
Yk ~ Normal(0,0,) k=1..L
Priors:  pu, ~ Normal(150,10)

o5 ~ Exponential(1/10)

o, ~ Exponential(1/10)

mass ~ 1 + (1|site) + (1]|campaign)

& Site-effect

< Campaign-effect

< Overall mean is the only fixed effect
in this basic example

41



Variance partitioning

Overall variance of the data is estimated on different levels

2 — 2 2
Stotal — Samong + Swithin

Ug
Site-campaign-level (among) o5 + o, / \

Explains additive deviations from overall mean pu, Ha + 6 + Vi

s + Oy
caused by site (os5) and campaign (ay) \
Observation-level (within) o Yi Y2 V3 Vi Vs
Explains each data point's deviation from —p C—p

o o
site-campaign-mean g + §; + i

(All the randomness in the data which is not caused by site-level differences)

Ve

42



0'59

Ho 2

i

> brm(mass ~ 1 + (1|site) + (1]|campaign), ..)

Family: gaussian
Links: mu = identity; sigma = identity
Formula: mass ~ 1 + (1 | site) + (1 | campaign)
Data: df (Number of observations: 200)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Multilevel Hyperparameters:
~campaign (Number of levels: 5)

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
sd(Intercept) 1.39 1.33 0.05 4.94 1.00 1983 2233

~site (Number of levels: 9)
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
sd(Intercept) 11.38 3.22 6.89 19.27 1.01 1085 2004

Regression Coefficients:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
Intercept 149.14 3.86 141.37 156.68 1.00 828 1274

Further Distributional Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
sigma 11.04 0.58 9.99 12.20 1.00 3320 2678



Example

« Measured weight of N = 200 viper snakes
« Data collected on M = 9 different sites across France

- Sites belong to L = 3 distinct mountain regions

Every site uniquely belongs to one region.

At least one region has 2 or more sites.

- Specify nested random effects

for factor site in factor region

44



Nested random effects

Model: Yi = Hq t Yregion(i) + 6region:site(i) + & mass ~ 1 + (1 | r‘egion/site)

mass ~ 1 + (1|region) + (1|region:site)
g; ~ Normal(0, o)

Yir ~ Normal(0, o;,) k=1..L & Regional-effect Au”stgsm:;'i;i'éy
region:site
8j ~ Normal(0, ay) j=1..M & Site-effect in region combinations

with M levels

Priors:  p, ~ Normal(150,10)
o, ~ Exponential(1/10)

o5 ~ Exponential(1/10)



Variance partitioning

Overall variance of the data is estimated on different levels

Ha
2 — o2 2 2
Stotal — Samong regions +samong sites in region +Swithin / \

Regional-level o),

batVe (13 — (1, -
: - o.
Explains deviations from overall mean u, / \ 14 / \
Site-level o ta+vi+6; (814 <_> S12 S23 <—> S2,4

Explains deviations from regional mean u,+yy /\ /\ /\ /\
V1 ¥

Observation-level (within) o

. I . o o o o 47
Data point deviations from site-mean u, + y; + 6,-



0'59

Ho 2

i

> brm(mass ~ 1 + (1|region/site), ..)
> brm(mass ~ 1 + (1|region) + (1|region:site), ..)

Family: gaussian
Links: mu = identity; sigma = identity
Formula: mass ~ 1 + (1 | region/site)
Data: df (Number of observations: 200)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Multilevel Hyperparameters:
~region (Number of levels: 3)

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
sd(Intercept) 12.21 6.76 2.81 30.38 1.00 1155 1073

~region:site (Number of levels: 9)
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
sd(Intercept) 6.01 2.60 2.57 12.65 1.600 1003 1395

Regression Coefficients:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
Intercept 148.99 6.45 135.11 161.86 1.00 1594 1365

Further Distributional Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
sigma 11.05 0.57 10.01 12.21 1.00 3750 2543



Nested or crossed?

Nested designs

(1|F1/F2) just short for (1|F1)+(1|F1:F2)

If nested factor F2 is uniquely labelled

(levels of F2 and F1:F2 identical)
this is same as crossed (1|F1)+(1]|F2)

Crossed designs

No need to be fully crossed for additive model.

(1|F1)+(1|F2) works for partially crossed, too.

Table 1. Schematic illustration of crossed and nested designs

Nested design (1 I Fl/FZ)

Factor 2
Factor 1 a b c d
A X X
B X X
Partially crossed design ( 1 I F1 ) + ( 1 | F2 )

Factor 2
Factor | a b c d
A X X
B X X
C X X
D X X
Fully crossed design (1 I F1)+(1 I F2)

Factor 2
Factor | a b c d
A X X X X
B X X X X
C X X X X
D X X X X

Schnielzeth & Nakagawa (2013) MEE
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Continuous correlation struc



Example

« Measured weight of N = 200 viper snakes

- Data collected on M = 9 different sites in the same region

Instead of using site as categorical grouping predictor,

we could use location (longitude & latitude) as continuous

~grouping" predictor.

~Everything is related to everything else,

but near things are more related than distant things.” (Tobler)

- Specify spatial autocorrelation model.

51



Example

X
« Measured weight of N = 200 viper snakes
X X
- Data collected on M = 9 different sites in the same region j

x“x\
Instead of using site as categorical grouping predictor, / X
X
X

Latitude

we could use location (longitude & latitude) as continuous

~grouping" predictor.

X

Longitude

~Everything is related to everything else,

Correlation function

but near things are more related than distant things.” (Tobler)

- Specify spatial autocorrelation model.

Correlation
0.0 02 04 06 08 1.0

0.0 0.5 1.0 15 2.0 25 3.0 52
Distance [km]



Spatial autocorrelation model

Model: Vi = Ug + & N-dimensional vector of residuals € :
multivariate normal distribution
£ ~ MVNormal(0, 62R) & with N X N correlation matrix R & variance ¢
Correlation: R;; = exp(—dist(i,j)/0) & Correlation decreases with

spatial distance of datapoints i, j
Priors: U, ~ Normal(150,10)

o ~ Exponential(1/10)

0 ~ Exponential(1/100) & Range parameter of spatial autocorrelation

« Model for spatial autocorrelation of residuals.
« Unfortunately not (yet?) implemented in brms.

- Code in Stan, or use alternative models.



Fixed residual correlation

Model: Vi = Ug + & brm( y ~ 1 + fcor(R),
data = ..,
£ ~ MVNormal(0, 62R) data2 = list(R=R) )
Correlation: R;; provided by user & Choose range 8 yourself and compute, e.g.,
Priors: U, ~ Normal(150,10) Ri; = exp(=dist(;,j)/6) from data.

Obtain 8 from variogram.
o ~ Exponential(1/10)

« Not ideal, since correlation range 6 is not

estimated jointly with the other parameters.

« But it's a fast and efficient solution.
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brms has a couple of options:
 Fixed correlation model

» Gaussian process regression

» Generalized additive models (GAM)

- but see mgcv package

1 i,j neighbours
0 otherwise

Adjacency matrix R;; = {

You can model autocorrelations
« spatial

« temporal

« spatio-temporal

» phylogenetic

latitude
o
(921
o

More ,,adventures in covariance" (McElreath)

1.00-

0.75-

0.25-

0.00-

1 ) X ) 1
0.00 0.25 0.50 0.75 1.00
longitude

Many of these models can get very slow
even for moderate N.

- INLA is designed for that. Very efficient !

55



Summary



Random or fixed effects ?

Classical / oldschool interpretation

You are interested in overall means / You are interested in differences in means /

overall effects, but must account for differences in effects between sites?

non-independence in data?

- site as a random grouping factor - site as fixed effect
~ 1 + (1|site) random intercepts ~ site ANOVA
~ X + (1|site) random intercepts ~ X + site ANCOVA (diff. in intercepts)

~ X + (x|site) random intercepts & slopes ~ X * site ANCOVA (diff. in intercepts & slopes)

Modern / relaxed interpretation

Can use random factor models for both to overcome difficulties like unbalanced / heterogeneous data



What's Bayesian about it ?

« Sometimes Ime4 just does not converge !
« Correct quantification of uncertainties on all levels.

« Works for all numbers of groups or numbers of obs.
Already 2-level grouping factor is OK.

« Interpretation “easy” through levels of priors

* Frequentist assumption: Random effects drawn from

a larger population of other, unmeasured groups
« Bayes: no such limitation

* Non-normal distribution of random effects?
- Bayes (Stan) can handle that!
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Summary

The Bayesian 3D printer

« Bayesian stats does not free you from model assumptions !
« If residuals are not independent, you must account for it.
« Otherwise: Fixed effects wrongly confident, CIs too narrow
« Thinking hard about your data will reveal
random effects structure.
« Formula notation just as in Ime4.
« Combine any kind of (generalized) linear (or nonlinear)
model with discrete (random) grouping factors and/or

continuous correlation structure ...

... in one R-package !!

Source: stockcake.coms
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