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This lecture

Introduction to GLM

Discrete responses

• Logistic regression

• Binomial regression

• Poisson regression

Continuous responses

• Beta regression

• Distributional model

Nonlinear models

Summary
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Assumptions for linear models

1. Independent observations.

Systematic differences in 𝑦 are because of 𝑥 !

2. Trend of 𝑦 follows (linear) prediction model

𝜇 𝑥 = 𝑎 + 𝑏 ⋅ 𝑥

3. Residuals follow normal distribution

𝜀 ~ Normal 0, 𝜎

4. Constant variance (standard deviation 𝜎) 

across whole range of 𝑥
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What do we need?

Deterministic part: 𝜇 𝑥 = 𝑎 + 𝑏 ⋅ 𝑥

→ Regression curve 𝜇 𝑥 that respects 

actual boundaries of the data

Stochastic part: 𝑦 ~ Normal(𝜇, 𝜎)

→ A distribution that models non-normal residuals

correctly (discrete, skewed, non-constant var, …)
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The generalized linear model (GLM)

Theoretically, we could fit all kinds of

nonlinear regression curves 𝜇 𝑥 to the data

GLM is a special case of nonlinear models, 

that maps a linear model 𝜂 𝑥 = 𝑎 + 𝑏𝑥

with a nonlinear function 𝜇 = 𝑓 𝜂 𝑥

to the response scale 𝑦

Why? „Easy“ to use.

Model structures, interactions, effect sizes, etc in the linear part are meaningful

Nonlinear models

Generalized linear models

Linear models
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Deterministic part: the link function g

Inverse link compresses linear model 𝜂(𝑥) to response scale

Link function expands mean regression curve 𝜇(𝑥) to linear scale

(Yes, this notation is very confusing)

link function 𝒈 𝝁

inverse link 𝒇 𝜼

Linear scale Response scale

linear model

𝜼 = 𝒂 + 𝒃 ⋅ 𝒙
mean regression

curve 𝝁 = 𝒇(𝜼)
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Stochastic part: a (non-normal) distribution 

Linear model: 𝜂 𝑥 = 𝑎 + 𝑏 ⋅ 𝑥

(Inverse) link: 𝜇 = 𝑓 𝜂

Residual: 𝑦 ∼ Distribution 𝜇,…

Distribution limited by type of data 𝑦:

• discrete or continuous ?

• constrained (lower/upper) or unconstrained ?

• skewed or symmetric ?

• mean-variance relationship ?

Binomial Poisson

Beta Gamma

additional scale 
or dispersion 
parameters

mean
prediction
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3 parts of the GLM

1: linear model 2: (inverse) link 3: residual distribution

• Which predictors ?

• How? Interactions, etc. ?

• All linear models allowed

(also ANOVA, ANCOVA, …)

• Assign priors 𝒑 𝜽 for 

model parameters ! 

• Mean prediction 𝜇 𝑥

• On response scale

• 𝑓 inverse link function

• 𝑔 link function  

• How is 𝑦 distributed 

around mean prediction 𝜇 ?

• Defines likelihood 𝒑 𝒚|𝜽

𝜂 𝑥 = 𝑎 + 𝑏 ⋅ 𝑥 𝜇 = 𝑓(𝜂)
𝑓

𝑔

𝑝 𝑦 𝜃



10

Computation

Logical order of computation

𝜂 = 𝑎 + 𝑏 ⋅ 𝑥

𝜇 = 𝑓 𝜂

𝑦 ∼ Distribution 𝜇

Uses inverse-link 𝑓

Pseudo-code for Stan / Nimble / JAGS

for(i=1:n){

mu[i] = f(a+b*x[i])

y[i] ~ Distribution(mu[i])

}

Formula-based notation

𝑔(𝜇) = 𝑎 + 𝑏 ⋅ 𝑥

𝑦 ∼ Distribution 𝜇

Uses link function 𝑔

Base-R / rstanarm / brms:

glm( y~x, family=Distribution(link=g) )

brm( y~x, family=Distribution(link=g),

prior=my.priors ) 



Logistic regression
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Logistic regression

Example: Occurrence of a butterfly species 

versus temperature

Each observation is a habitat.

Dataset records presence / absence (1/0) of a rare species.

Mean annual temperature of each habitat as predictor.

Q: What is the relationship between temp. and occurrence?

What is the expected probability of occurrence for a new 

habitat with a given temperature?
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Logistic regression: overview

1: linear model 2: (inverse) link 3: residual distribution

1 predictor temperature:

𝜂 = 𝑏0 + 𝑏1 ⋅ 𝑡𝑒𝑚𝑝

Logit link

𝑔 = logit 𝜇 = log
𝜇

1−𝜇

Inverse-logit (“logistic”)

𝑓 = logistic 𝜂 =
exp(𝜂)

1+exp 𝜂

Bernoulli distribution

𝑦 ∼ Bernoulli 𝑝 = 𝜇

= ቊ
𝑝 𝑦 = 1

1 − 𝑝 𝑦 = 0

Special case of Binomial distr. 

for 𝑁 = 1 trials

𝑓

𝑔

𝑝 𝑦 𝜇

𝜂 𝑥 𝜇 = probability of

occurrence
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Logistic regression: priors

On response scale: 𝜇 𝜂 = +4 = 0.982 “almost always”

𝜇 𝜂 = −4 = 0.018 “almost never”

→ Scale predictors 𝑥 & choose meaningful prior for slopes, e.g. 𝑏1 ∼ Normal 0,1

𝑔

𝑓

Linear scale 𝜼 Response scale 𝝁

𝜂 = 𝑏0 + 𝑏1 ⋅ 𝑥

𝒃𝟏 = 𝟏
𝒃𝟏 = 𝟐
𝒃𝟏 = 𝟒

𝜇 = probability of

occurrence
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Logistic regression: model fit

Deterministic part logit 𝑝 = 𝑏0 + 𝑏1 ⋅ 𝑡𝑒𝑚𝑝

(linear model & link)

Stochastic part 𝑜𝑐𝑐𝑢𝑟𝑟 ∼ Bernoulli(𝑝)

Priors 𝑏0 ∼ brms-default

𝑏1 ∼ Normal 0,1

> brm(occurr~temp, family=bernoulli(link=logit), 
prior =… )
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Logistic regression: model fit

> brm(occurr~temp, family=bernoulli(link=logit), 
prior =… )

Q:  Is there a positive relationship between
temperature and occurrence?

→ Yes, positive: 𝑏1 = 1.70 [0.77, 2.78]
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Logistic regression: model fit

Remember:
• Each sample from the posterior is a 

regression curve
• Mean fitted and CIs are computed 

from this distribution of fitted curves



18

Logistic regression: model fit

(mean) slope b1=1.70 
Steepest incline in p=0.5 
¼-rule: slope b1/4=0.424

Linear scale 𝜼 Response scale 𝝁
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Logistic regression: evaluation

> pp_check(fit, type=„bars“)

Fitted curves:
deterministic part only

Predicted data:
deterministic & stochastic part

> plot(conditional_effects(fit,…))
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Logistic regression: evaluation

Residual plot not very 
informative here
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Logistic regression: evaluation

Use binned residuals plot:
Systematic deviation from 0 
would indicate bad model fit

> arm::binnedplot(fitted, residuals)
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Logistic regression (Niche model)

Example: Occurrence of a butterfly species 

versus temperature

Each observation is a habitat.

Dataset records presence / absence (1/0) of a rare species.

Mean annual temperature of each habitat as predictor.

New data collected in warmer habitats.

Q: What is the optimal temperature for this species ?
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Logistic regression: model fit

Deterministic part logit 𝑝 = 𝑏0 + 𝑏1 ⋅ 𝑡𝑒𝑚𝑝

(linear model & link) +𝒃𝟐 ⋅ 𝒕𝒆𝒎𝒑𝟐

Stochastic part 𝑜𝑐𝑐𝑢𝑟𝑟 ∼ Bernoulli(𝑝)

Priors 𝑏0 ∼ brms-default

𝑏1 ∼ Normal 0,1

> brm(occurr ~ temp + I(temp^2), 
family = bernoulli(link=logit), 
prior  = … )
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Logistic regression: model fit

> brm(occurr ~ temp + I(temp^2), 
family = bernoulli(link=logit), 
prior  = … )
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Logistic regression: model fit

Linear scale 𝜼 Response scale 𝝁
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Logistic regression: model fit

Q:  What is the optimal temperature?
(peak of the curve)

some calculus  → 𝑡opt = −
𝑏1

2𝑏2

compute 𝑡opt for each posterior sample

→ mean 0.22, 90% CI [0.01, 0.54]

𝒕𝒐𝒑𝒕



Binomial regression
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Binomial regression

Example: Deer survival probability

versus vegetation and predation

Monitored deer populations several habitats.

Recorded number of deer before and after winter.

Vegetation index (NDVI) and predator presence (yes/no).

Q: How much does vegetation affect survival probability?

Must control for predation. Is there an interaction?
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Binomial regression: overview

1: linear model 2: (inverse) link 3: residual distribution

Logit link

𝑔 = logit 𝜇 = log
𝜇

1−𝜇

Inverse-logit (“logistic”)

𝑓 = logistic 𝜂 =
exp(𝜂)

1+exp 𝜂

Binomial distribution

𝑦 ∼ Binomial 𝑁, 𝑝 = 𝜇

𝑓

𝑔

𝑝 𝑦 𝜇

𝜂 𝑥 𝜇 = probability of

survival
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Binomial distribution

Discrete distribution, bounded between 0 and 𝑁

Mean: 𝑁 ⋅ 𝑝

Sdev: 𝑁𝑝(1 − 𝑝) (increases with 𝑁)

Every datapoint 𝑦𝑖 can have its own 𝑁𝑖

𝑁 = 10
𝑝 = 0.25

𝑁 = 10
𝑝 = 0.5

𝑁 = 10
𝑝 = 0.9
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Binomial regression: ANCOVA model

Deterministic part logit 𝑝 = 𝑎0 + 𝑎1 ⋅ 𝑥𝑝𝑟𝑒𝑑 +

(linear model & link) 𝑏0 + 𝑏1 ⋅ 𝑥𝑝𝑟𝑒𝑑 ⋅ 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛

Dummy-coding 𝑥𝑝𝑟𝑒𝑑 = ቊ
0, 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 = 𝑛𝑜
1, 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 = 𝑦𝑒𝑠

Stochastic part 𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑 ∼ Binomial(𝑡𝑜𝑡𝑎𝑙, 𝑝)

Priors 𝑎0 ∼ brms-default

𝑎1, 𝑏0, 𝑏1 ∼ Normal 0,1

> brm(survived | trials(total) ~ vegetation * predator, 
family = binomial(link=logit), 
prior  = … )
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Binomial regression: model fit additive

> brm(survived|trials(total) ~ vegetation+predator, 
family = binomial(link=logit), 
prior  = … )

Can also use scale(…) in the model formula.
Predictions can be generated on original scale
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Binomial regression: model fit additive

Linear scale 𝜼 Response scale 𝝁

Additive ANCOVA:
Predictions are parallel 
on the linear scale.
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Binomial regression: model fit interaction

> brm(survived|trials(total) ~ vegetation*predator, 
family = binomial(link=logit), 
prior  = … )

Alternative: model comparison against additive model.

→ Vegetation has a stronger effect in predator habitats.

Important as shelter to hide from predators.
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Binomial regression: model fit interaction

Linear scale 𝜼 Response scale 𝝁

Interaction ANCOVA:
Slopes are different on 
linear scale
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Binomial regression: evaluation

> plot(conditional_effects(fit,…))
+ add proportion data manually 

> pp_check(fit, ndraws=100)
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Binomial regression: evaluation

> pp_check(fit, type=„scatter_avg“)> arm::binnedplot(fitted, residuals)



Continuous example:
Beta regression

38
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Beta regression

Example: Deer survival probability

versus vegetation and predation

Same data as in Binomial regression.

But this time it‘s an old dataset where they only recorded

the ratio ∈ [𝟎, 𝟏] of surviving individuals, not actual numbers

Bad practice: e.g. 50/100 contains more information than 1/2.

When transforming both to 0.5, this information is lost.

Q: How much does vegetation affect survival probability?

Must control for predation.
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Beta regression: overview

1: linear model 2: (inverse) link 3: residual distribution

Logit link

𝑔 = logit 𝜇 = log
𝜇

1−𝜇

Inverse-logit (“logistic”)

𝑓 = logistic 𝜂 =
exp(𝜂)

1+exp 𝜂

Beta distribution

𝑦 ∼ Beta 𝛼, 𝛽

𝑓

𝑔

𝑝 𝑦 𝜇

𝜂 𝑥 𝜇 = probability of

survival



41

Beta distribution

Continuous distribution, bounded between 0 and 1.

Complicated parameterization with 2 shape parameters 𝛼, 𝛽: Mean 
𝛼

𝛼+𝛽
. Sdev decreases with 𝛼 and 𝛽

brms takes care of parameterization:

Mean 𝜇 and shape parameter 𝜙 generate 𝛼, 𝛽 automatically

𝛼 = 2.0
𝛽 = 4.0

𝜇 = 0.333

𝛼 = 4.0
𝛽 = 4.0

𝜇 = 0.5

𝛼 = 8.0
𝛽 = 4.0

𝜇 = 0.666

ATTN: Exact 𝑦 = 0 or 𝑦 = 1 not allowed. 

→ Use zero- or one-inflated beta, or ordered beta.
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Beta regression: model fitting

> brm(proportion ~ vegetation * predator, 
family = Beta(link=logit), 
prior  = … )

Results slightly different from Binomial regression

Additional scale parameter phi ~ 1/sdev



Poisson regression
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Poisson regression

Example: Abundance of trout in stream transects.

Recorded number of individuals per transect.

Measured temperature and concentration of a pollutant.

Q: Is pollutant concentration more harmful in warm streams?
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Binomial regression: overview

1: linear model 2: (inverse) link 3: residual distribution

Log link

𝑔 = log 𝜇

Inverse-link

𝑓 = ex𝑝 𝜂

Poisson distribution

𝑦 ∼ Poisson 𝜇

𝑓

𝑔

𝑝 𝑦 𝜇

𝜂 𝑥 𝜇 = mean count
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Poisson distribution

Discrete distribution, lower bound 0, no upper boundary → used for counting data

Mean:  𝜇

Sdev: 𝜇 (Variance equal to mean)

𝜇 = 4 𝜇 = 8 𝜇 = 16

You make more errors counting many fish 

compared to when counting just a few fish
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Poisson regression: interaction model

Deterministic part log 𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑡𝑒𝑚𝑝 + 𝑏2 ⋅ 𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛

(linear model & link) 𝑏3 ⋅ 𝑡𝑒𝑚𝑝 ⋅ 𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛

Stochastic part 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 ∼ Poisson(𝜇)

Priors 𝑏0 ∼ brms-default

(scaled predictors!) 𝑏1 ∼ Normal 0,1

𝑏2 ∼ Normal −1,1 neg. pollution effect

𝑏3 ∼ Normal 0,1

> brm(abundance ~ temperature * pollution, 
family = poisson(link=log), 
prior  = … )
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Poisson regression: additive model

> brm(abundance ~ temperature + pollution, 
family = poisson(link=log), 
prior  = … )

→ Temperature and pollution both have
negative effects on abundance

(slopes are on linear scale)
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Poisson regression: additive model

Differ by additive constants Differ by mult. factors

Linear scale 𝜼 Response scale 𝝁
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Poisson regression: interaction model

> brm(abundance ~ temperature * pollution, 
family = poisson(link=log), 
prior  = … )

Q: Is pollutant concentration more harmful 
in warm streams?

→ Yes, negative pollution effect gets stronger with temp.
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Poisson regression: interaction model

Slopes vary through interaction

Linear scale 𝜼 Response scale 𝝁
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Poisson regression: Overdispersion

Mean: 𝝁
Var: 𝝁

Mean: 𝝁
Scale parameter 𝝉

Var: 𝝁 +
𝝁𝟐

𝝉

𝜏 small → Var ∼ 𝜇2

𝜏 big → Var ∼ 𝜇

> family=negbinomial(link=log)

Often count data does not follow the

mean-variance relation of Poisson

→ Use Negative Binomial distribution 



Continuous example:
Distributional model

53
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Distributional models

Data is clearly heteroskedastic (non-constant sdev)

Continuous response 𝑦 → Can’t use Poisson / Neg.Bin. 

Linear regression line wanted  → Can’t use log-link

We can make standard deviation dependent on 𝒙

→ 𝑦 ∼ Normal 𝜇 𝑥 , 𝜎 𝑥
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Distributional models

1: linear model 2: (inverse) link

3: residual distribution

𝜂 𝑥 = 𝑎 + 𝑏 ⋅ 𝑥

Identity link

𝜏 𝑥 = 𝑐 + 𝑑 ⋅ 𝑥

𝝁 = 𝜼

Log link

𝝈 = exp 𝝉

M
e
a
n

 m
o

d
e
l

S
d

e
v
 m

o
d

e
l

𝒚 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 𝝁 𝒙 , 𝝈 𝒙guaratees 
positive 
sdev
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Regular model fit

> fit_lm = brm( y ~ x )

Bad model fit !

Some assumptions violated
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Distributional model fit

> fit_distr = brm( bf( y~x, sigma~x ),

family = gaussian() )

Log link for sigma as default

Slope in x substantially different from fit_lm
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Distributional model fit

Linear scale 𝝉 Response scale 𝝈

Intercept and slope 
for sigma are on 
linear scale

> plot(conditional_effects(fit_distr,
dpar="sigma",
method="posterior_linpred"))

> plot(conditional_effects(fit_distr,
dpar="sigma"))
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Distributional model: evaluation

> pp_check(fit_distr, ndraws=100) > plot(conditional_effects(fit_distr,
method="posterior_predict"))



60

Distributional models: ANOVA

> fit.anova = brm( bf( y ~ 0+treatment, 

sigma ~ 0+treatment ),

family = gaussian() )

on linear scale. 

→ sdev = exp(sigma)



Beyond GLMs:
Nonlinear models 

61
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Nonlinear model

Example: Microcosm experiment

Feeding rates of a small crustacean

“Functional response” 𝐹 𝑁 =
𝑎𝑁

1+𝑎ℎ𝑁

Depends on prey density 𝑁

Want to estimate attack rate 𝒂 and handling time 𝒉

Data:

Controlled feeding trials in the lab (1 hour) 

at different prey densities 𝑁0.

Source: Misjel Decleer CC BY-NC-SA 4.0
www.marinespecies.org/photogallery.php?album=717&pic=3616 

slope 𝒂

max feeding 𝟏/𝒉
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Nonlinear model: fitting

FR.formula = bf( NE ~ a*N0/(1+a*h*N0), → the model formula

a ~ 1, → parameters do not depend

h ~ 1, on other predictors

nl = TRUE) → it’s a nonlinear model

FR.priors  = c(prior(exponential(1.0), nlpar="a", lb=0),  → exp. distr.   mean=1, sdev=1 

prior(exponential(1.0), nlpar="h", lb=0))    and positive (lower bound 0)

fit.joint  = brm(FR.formula,

prior  = FR.priors,

family = poisson(link=identity), → response=counts, no log-link required

data   = df) (FR model is always positive)
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Nonlinear model: fitting

FR.formula = bf( NE ~ a*N0/(1+a*h*N0), 

a ~ 1, 

h ~ 1, 

nl = TRUE)
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Nonlinear model: fitting

Include categorical predictor temperature (levels = low / high)

Q: Is feeding behavior different in warm experiments?

FR.formula = bf( NE ~ a*N0/(1+a*h*N0), → the model formula

a ~ 0 + temp, → individual parameters at low / high temp.

h ~ 0 + temp, 0 to avoid dummy-coding

nl = TRUE) → it’s a nonlinar model

FR.priors  = c(prior(exponential(1.0), nlpar="a", lb=0),  → exp. distr.   mean=1, sdev=1 

prior(exponential(1.0), nlpar="h", lb=0))    and positive (lower bound 0)

FR.fit.tmp = brm(FR.formula,

prior  = FR.priors,

family = poisson(link=identity), → response=counts, no log-link required

data   = df) (FR model is always positive)
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Nonlinear model: fitting

FR.formula = bf( NE ~ a*N0/(1+a*h*N0), 

a ~ 0 + temp, 

h ~ 0 + temp, 

nl = TRUE)
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Nonlinear model: fitting

> hypothesis(FR.fit.tmp, 
c("a_temphi > a_templo",
"h_temphi > h_templo" ))

Q: Is feeding behavior different in warm experiments?

→ Yes: „warm“ attack rates higher, mean diff. = 0.9 [0.43,1.42] 
But no difference in handling time (max feeding)

> LOO(FR.fit.tmp, FR.fit)
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What‘s Bayesian about it?

• Exact quantification of parameter uncertainty.

Even more important when moving beyond simple LMs.

• Don‘t use parameters‘ point estimates for prediction

→ Use full posterior predictive distribution

→ emmeans for contrasts

• Works well even for very small datasets

• Not limited to GLM framework

• No extra packages needed, do it all in brms

?

Source: Wikipedia
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Summary

• brms highly flexible, can fit vast amount of GLMs. 

Even nonlinear models!

• Bayesian stats not limited to GLM, 

but linear part in GLM is useful and interpretable

• Data should indicate which GLM (distribution & link) to use

• Be careful with priors when using link functions.

Scaled / mean-centered predictors are your friend

• Use appropriate plots for model evaluation

• ATTN: Don‘t do model comparison (loo) 

for discrete vs. continuous residual distribution

E.g. Poisson vs. Gaussian
Source: stockcake.com

The Bayesian 3D printer
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