Introduction to Bayesian Statistics

Part 4 Linear Models

Benjamin Rosenbaum

In this lecture

- What is a linear model?
- Continuous predictors (Regression)
- Categorical predictors (ANOVA)
- Categorical & continuous predictors (ANCOVA)

In-between:

- Model selection
- Post-hoc analysis

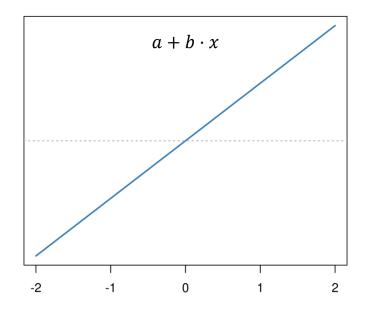
What is a linear model?

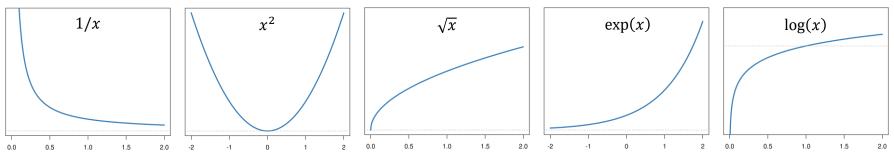
Linear functions

Linear in *x* (predictor)

 $f(x) = a + b \cdot x$

Additive with constant a (intercept) Multiplication only with constant b (slope)



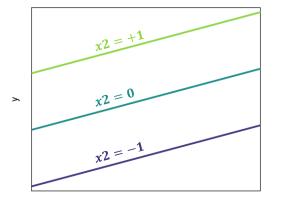


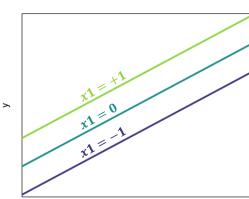
Some **nonlinear** functions:

Linear functions

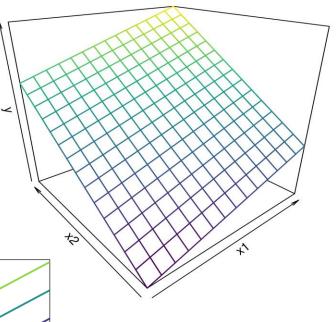
Extend to **multiple predictors** $x_1, x_2, ...$

$$f(x) = b_0 + b_1 \cdot x_1 + b_2 \cdot x_2$$





x2



x1

Linear statistical models

Linear in *b* (parameters) and Gaussian random errors ε (normally distributed)

 $y(x) = \boldsymbol{b_0} + \boldsymbol{b_1} \cdot x + \boldsymbol{\varepsilon}$

 $y(x) = \boldsymbol{b_0} + \boldsymbol{b_1} \cdot x_1 + \boldsymbol{b_2} \cdot x_2 + \boldsymbol{\varepsilon}$

Nonlinear in *b*, for example:

 $y(x) = \boldsymbol{b_0} + x^{\boldsymbol{b_1}} + \boldsymbol{\varepsilon}$

 $y(x) = \boldsymbol{b_0} + \exp(\boldsymbol{b_1} \cdot x) + \boldsymbol{\varepsilon}$

Linear statistical models in the frequentist world:

Analytical solution (formula) for parameter estimates

Easy computation with lm()

Nonlinear models in the frequentist world:

Maximum likelihood estimation (iterative algorithm)

Linear statistical models

Quadratic (polynomial) relationships

$$y = b_0 + b_1 \cdot x + b_2 \cdot x^2 + \varepsilon$$

= $b_0 + b_1 \cdot x_1 + b_2 \cdot x_2 + \varepsilon$
define
 $x_1 = x$
 $x_2 = x^2$

Interaction effects

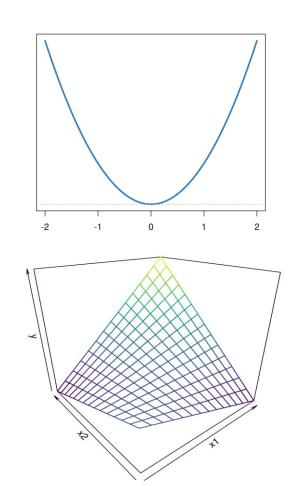
$$y = b_0 + b_1 \cdot x_1 + b_2 \cdot x_2 + b_3 \cdot x_1 \cdot x_2 + \varepsilon$$

$$= b_0 + b_1 \cdot x_1 + b_2 \cdot x_2 + b_3 \cdot x_3 + \varepsilon$$

define $x_3 =$

→ Some nonlinear relationships can be described with linear statistical models (linear in the parameters)

 $x_1 x_2$



Linear statistical models

Transformation of response variable

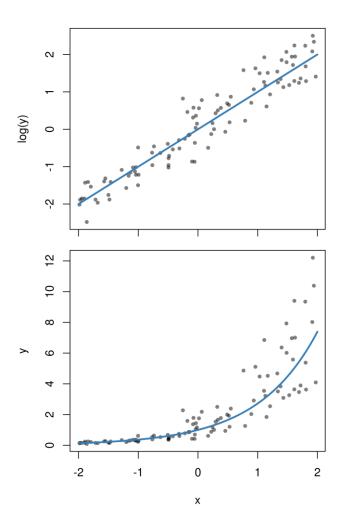
 $\log(y) = \boldsymbol{b_0} + \boldsymbol{b_1} \cdot \boldsymbol{x} + \boldsymbol{\varepsilon}$

Attention: model becomes multiplicative When back transforming to *y*-scale

$$y = \exp(b_0 + b_1 \cdot x + \varepsilon)$$

= $\exp(b_0) \cdot \exp(b_1 x) \cdot \exp(\varepsilon)$
= $\tilde{b}_0 \cdot \exp(b_1 x) \cdot \tilde{\varepsilon}$

→ Sometimes statistical models can be "linearized" by transformation



8

Common statistical tests are linear models

Last updated: 28 June, 2019.Also check out the Python version!

See worked examples and more details at the accompanying notebook: <u>https://lindeloev.github.io/tests-as-linear</u>

	Common name	Built-in function in R	Equivalent linear model in R	Exact?	The linear model in words	lcon
(× +	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	t.test(y) wilcox.test(y)	lm(y ~ 1) lm(signed_rank(y) ~ 1)	✓ <u>for N >14</u>	One number (intercept, i.e., the mean) predicts y . - (Same, but it predicts the <i>signed rank</i> of y .)	: <mark>* </mark> *:
: Im(y ~ 1	P: Paired-sample t-test N: Wilcoxon matched pairs	t.test(y ₁ , y ₂ , paired=TRUE) wilcox.test(y ₁ , y ₂ , paired=TRUE)	$\begin{array}{l} Im(y_2 - y_1 \sim 1) \\ Im(signed_rank(y_2 - y_1) \sim 1) \end{array}$	√ f <u>or N >14</u>	One intercept predicts the pairwise y ₂ - y ₁ differences. - (Same, but it predicts the <i>signed rank</i> of y ₂ - y ₁ .)	
regression:	y ~ continuous x P: Pearson correlation N: Spearman correlation	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	lm(y ~ 1 + x) lm(rank(y) ~ 1 + rank(x))	√ for N >10	One intercept plus x multiplied by a number (slope) predicts y . - (Same, but with <i>ranked</i> x and y)	- AND
Simple r	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	t.test(y ₁ , y ₂ , var.equal=TRUE) t.test(y ₁ , y ₂ , var.equal=FALSE) wilcox.test(y ₁ , y ₂)	$Im(y \sim 1 + G_2)^A$ gIs(y ~ 1 + G ₂ , weights= ⁶) ^A Im(signed_rank(y) ~ 1 + G ₂) ^A	✓ ✓ for N >11	An intercept for group 1 (plus a difference if group 2) predicts y . - (Same, but with one variance <i>per group</i> instead of one common.) - (Same, but it predicts the <i>signed rank</i> of y .)	¥.
x2 +)	P: One-way ANOVA N: Kruskal-Wallis	aov(y ~ group) kruskal.test(y ~ group)	$\begin{split} ℑ(y\sim 1+G_2+G_3++G_N)^A \\ ℑ(rank(y)\sim 1+G_2+G_3++G_N)^A \end{split}$	✓ for N >11	An intercept for group 1 (plus a difference if group ≠ 1) predicts y . - (Same, but it predicts the <i>rank</i> of y .)	₩
- 1 + X ₁ +	P: One-way ANCOVA	aov(y ~ group + x)	$Im(y \sim 1 + G_2 + G_3 + + G_N + x)^A$	~	- (Same, but plus a slope on x.) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.	
sion: Im(y -	P: Two-way ANOVA	aov(y ~ group * sex)	$\begin{array}{l} Im(y\sim 1+G_{2}+G_{3}++G_{N}+\\ S_{2}+S_{3}++S_{K}+\\ G_{2}^{*}S_{2}+G_{3}^{*}S_{3}++G_{N}^{*}S_{K}) \end{array}$	*	Interaction term: changing sex changes the $y \sim group$ parameters. Note: $G_{2 \text{ term}}$ is an <u>indicator (0 or 1)</u> for each non-intercept levels of the group variable. Similarly for $S_{2 \text{ term}}$ for sex. The first line (with G ₃) is main effect of group, the second (with S ₃) for sex and the third is the group × sex interaction. For two levels (e.g. male/female), line 2 would just be "S ₂ " and line 3 would be S ₂ multiplied with each G.	[Coming]
Multiple regression:	Counts ~ discrete x N: Chi-square test	chisq.test(groupXsex_table)	$\label{eq:constraint} \begin{array}{l} \hline \textbf{Equivalent log-linear model} \\ glm(y \sim 1 + G_2 + G_3 + + G_N + \\ S_2 + S_3 + + S_K + \\ G_2 \cdot S_2 + G_3 \cdot S_3 + + G_N \cdot S_K, \ family=)^A \end{array}$	~	Interaction term: (Same as Two-way ANOVA.) Note: Run glm using the following arguments: glm(model, family=poisson()) As linear-model, the Chi-square test is $log(y) = log(N) + log(a) + log(\beta) + log(a,\beta)$ where a_i and β_i are proportions. See more info in <u>the accompanying notebook</u> .	Same as Two-way ANOVA
Mu	N: Goodness of fit	chisq.test(y)	$glm(y \sim 1 + G_2 + G_3 + + G_N, family=)^A$	~	(Same as One-way ANOVA and see Chi-Square note.)	1W-ANOVA

https://lindeloev.github.io/tests-as-linear/

Bayesian stats & linearity

Linearity actually not that important

MCMC does not care if deterministic model part is linear $\mu(x) = a + b \cdot x$

or nonlinear $\mu(x) = \frac{a \cdot x}{b + x}$

However, nonlinear (and also polynomial) models should only be considered when there is a good reason, not just because they would fit the data better.

Principle of parsimony, Occam's razor (14th century): "Entities must not be multiplied beyond necessity"

The Bayesian 3D printer

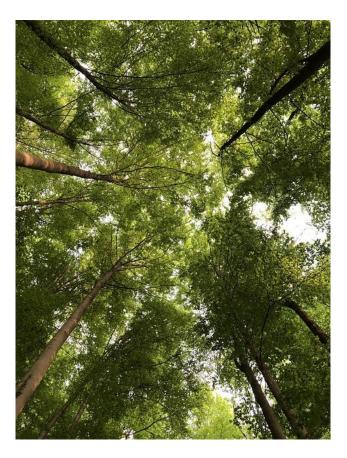
Continuous predictors (Linear regression)

Example: Latitudinal gradient of plant size

Global database with:

- log10 of plant height as response
- latitude as predictor

Later: include precipitation as environmental predictor



Example: Latitudinal gradient of plant size

Stochastic part: $log(height) \sim Normal(\mu, \sigma)$ Deterministic part: $\mu = b_0 + b_1 \cdot lat$

> brm(log(height)~lat, data=globalPlants)

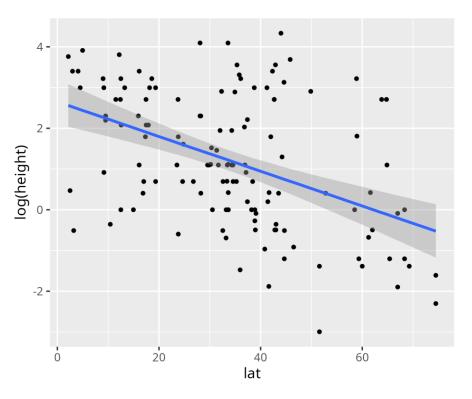
```
Family: gaussian
Links: mu = identity; sigma = identity
Formula: log(height) ~ lat
Data: globalPlants (Number of observations: 131)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000
```

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	2.65	0.28	2.09	3.20	1.00	3634	2805
lat	-0.04	0.01	-0.06	-0.03	1.00	4126	2981

Further Distributional Parameters:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sigma	1.50	0.09	1.33	1.70	1.00	3419	2835



Example: Latitudinal gradient of plant size

Stochastic part: $log(height) \sim Normal(\mu, \sigma)$ Deterministic part: $\mu = b_0 + b_1 \cdot lat$

> brm(log(height)~lat, data=globalPlants)

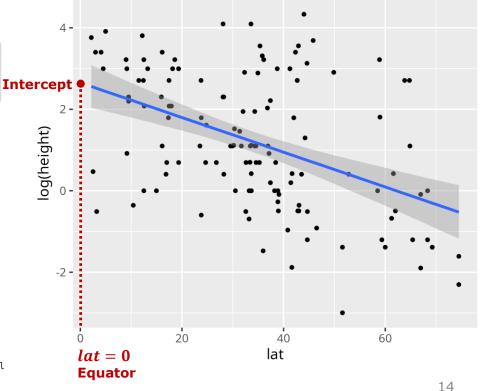
```
Family: gaussian
Links: mu = identity; sigma = identity
Formula: log(height) ~ lat
Data: globalPlants (Number of observations: 131)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000
```

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	2.65	0.28	2.09	3.20	1.00	3634	2805
Intercept lat	-0.04	0.01	-0.06	-0.03	1.00	4126	2981

Further Distributional Parameters:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sigma	1.50	0.09	1.33	1.70	1.00	3419	2835



Example: Latitudinal gradient of plant size

scale predictor (\rightarrow mean = 0, sdev = 1)

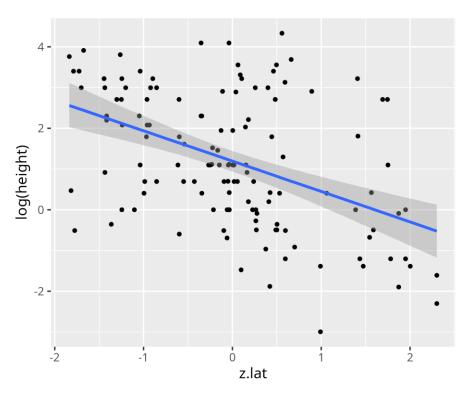
 $z.lat = \frac{lat-mean(lat)}{sdev(lat)}$ "z-score"

Deterministic part: $\mu = b_0 + b_1 \cdot z. lat$

> brm(log(height)~z.lat)

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS Tail_	ESS
Intercept	1.19	0.13	0.94	1.44	1.00	3799 2	873
z.lat	-0.75	0.13	-1.00	-0.49	1.00	4196 2	815



Example: Latitudinal gradient of plant size

scale predictor (\rightarrow mean = 0, sdev = 1)

 $z. lat = \frac{lat-mean(lat)}{sdev(lat)}$ "z-score"

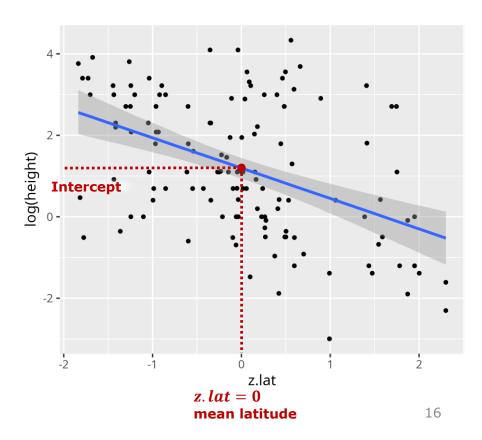
Deterministic part: $\mu = b_0 + b_1 \cdot z. lat$

> brm(log(height)~z.lat)

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.19	0.13	0.94			3799	
Intercept z.lat	-0.75	0.13	-1.00	-0.49	1.00	4196	2815

Now intercept is predicted log(height)when predictor *lat* is at its average and slope is effect for 1 sdev increment of *lat*



Example: Latitudinal gradient of plant size

Stochastic part: $log(height) \sim Normal(\mu, \sigma)$ Deterministic part: $\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain$

> brm(log(height)~z.lat+z.rain)

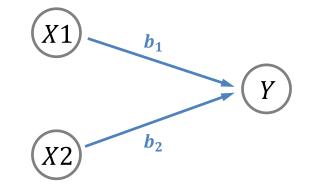
Family: gaussian Links: mu = identity; sigma = identity Formula: log(height) ~ z.lat + z.rain Data: globalPlants (Number of observations: 131) Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup draws = 4000

Regression Coefficients:

	Estimate	Est.Error	l-95% C	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.20	0.13	0.9	1.44	1.00	3186	2563
z.lat	-0.48	0.16	-0.78	-0.19	1.00	3490	3236
z.rain	0.46	0.15	0.10	0.76	1.00	3518	3088

Further Distributional Parameters:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sigma	1.45	0.09	1.29	1.65	1.00	3605	2835



Example: Latitudinal gradient of plant size

Stochastic part: $log(height) \sim Normal(\mu, \sigma)$ Deterministic part: $\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain$

> brm(log(height)~z.lat+z.rain)

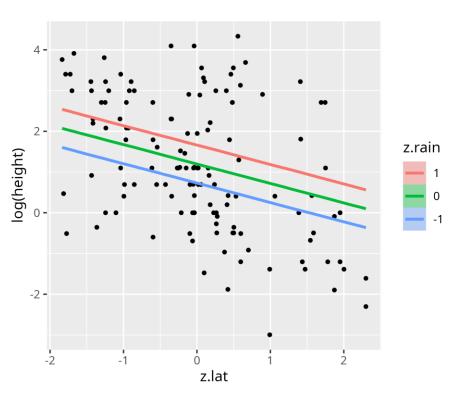
Family: gaussian Links: mu = identity; sigma = identity Formula: log(height) ~ z.lat + z.rain Data: globalPlants (Number of observations: 131) Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup draws = 4000

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.20	0.13	0.95	1.44	1.00	3186	2563
z.lat	-0.48	0.16	-0.78	-0.19	1.00	3490	3236
z.rain	0.46	0.15	0.16	0.76	1.00	3518	3088

Further Distributional Parameters:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sigma	1.45	0.09	1.29	1.65	1.00	3605	2835



Example: Latitudinal gradient of plant size

Stochastic part: $log(height) \sim Normal(\mu, \sigma)$ Deterministic part: $\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain$

> brm(log(height)~z.lat+z.rain)

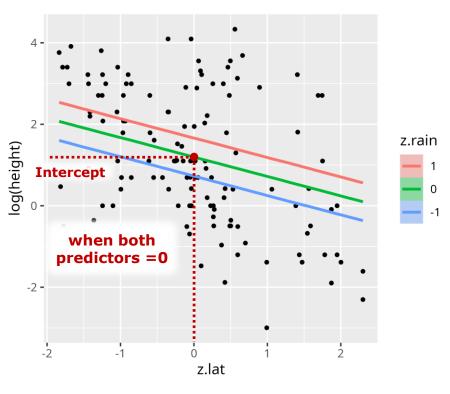
Family: gaussian Links: mu = identity; sigma = identity Formula: log(height) ~ z.lat + z.rain Data: globalPlants (Number of observations: 131) Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup draws = 4000

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.20	0.13	0.95	1.44	1.00	3186	2563
z.lat	-0.48	0.16	-0.78	-0.19	1.00	3490	3236
z.rain	0.46	0.15	0.16	0.76	1.00	3518	3088

Further Distributional Parameters:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sigma	1.45	0.09	1.29	1.65	1.00	3605	2835



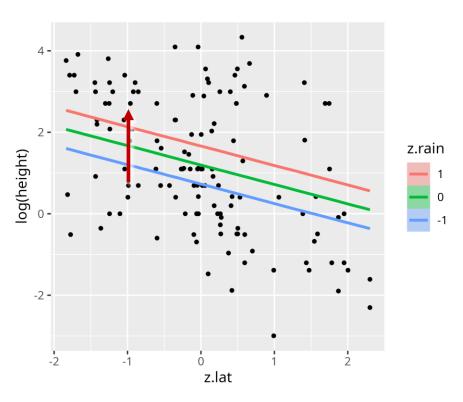
Example: Latitudinal gradient of plant size

Stochastic part: $log(height) \sim Normal(\mu, \sigma)$ Deterministic part: $\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain$

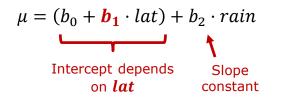
$$\mu = (b_0 + b_2 \cdot rain) + b_1 \cdot lat$$
Intercept depends Slope constant

 2^{nd} variable shifts intercept by b_2

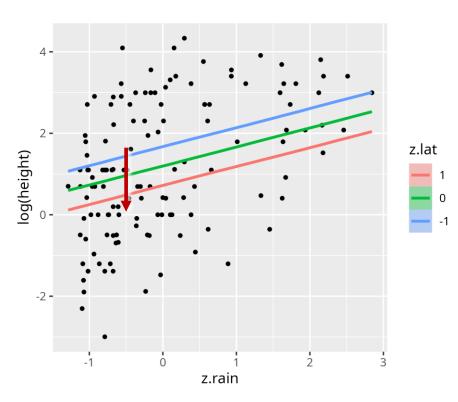
Simpler interpretation when using scaled variables *z*. *lat* and *z*. *rain*



Now let's look at it from the perspective the 2^{nd} predictor *rain*



 $1^{\rm st}$ variable shifts intercept by b_1



Multiple predictors: multicollinearity

Example: Latitudinal gradient of plant size

Stochastic part: $log(height) \sim Normal(\mu, \sigma)$ Deterministic part: $\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain$

What if predictor variables are correlated ? Here lat influences rain !

- A bit of multicollinearity is OK.
- But be aware of interpretation of effects!
- b_1 is effect $x_1 \rightarrow y$, while x_2 held constant!
- Slopes describe direct (isolated) effects only, not total effect
- Often the problem when dealing with observational data instead controlled experiments.



 \rightarrow Cinelli, Forney & Pearl (2024). A crash course in good and bad controls

Example: Latitudinal gradient of plant size

 $log(height) \sim Normal(\mu, \sigma)$ $\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain + b_3 \cdot lat \cdot rain$

> brm(log(height)~z.lat*z.rain)

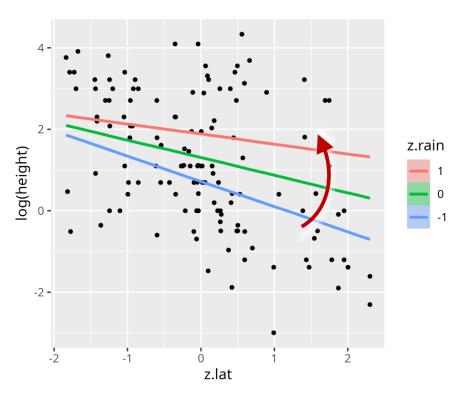
Family: gaussian Links: mu = identity; sigma = identity Formula: log(height) ~ z.lat * z.rain Data: globalPlants (Number of observations: 131) Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup draws = 4000

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.30	0.15	1.00	1.59	1.00	4804	2827
z.lat	-0.43	0.16	-0.74	-0.11	1.00	3606	3169
z.rain	0.58	0.18	0.23	0.95	1.00	3153	3169
z.lat:z.rain	0.19	0.14	-0.09	0.47	1.00	4010	2982

Further Distributional Parameters:

	Estimate	Est.Error	l-95% CI	u-95% C	I Rhat	Bulk_ESS	Tail_ESS
sigma	1.45	0.09	1.28	1.6	1.00	4778	2801



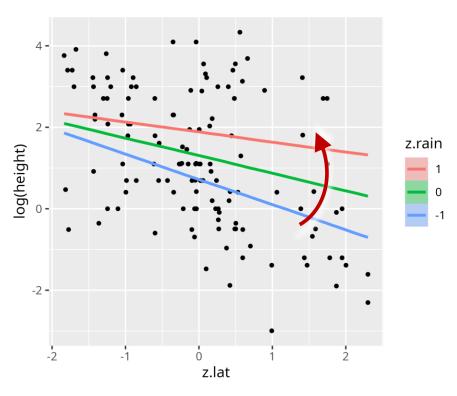
Example: Latitudinal gradient of plant size

 $log(height) \sim Normal(\mu, \sigma)$ $\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain + \mathbf{b_3} \cdot \mathbf{lat} \cdot \mathbf{rain}$

$$\mu = (b_0 + b_2 \cdot rain) + (b_1 + \mathbf{b_3} \cdot rain) \cdot lat$$

Intercept depends on *rain* Slope also depends on *rain*

 2^{nd} variable shifts intercept by b_2 shifts slope by b_3

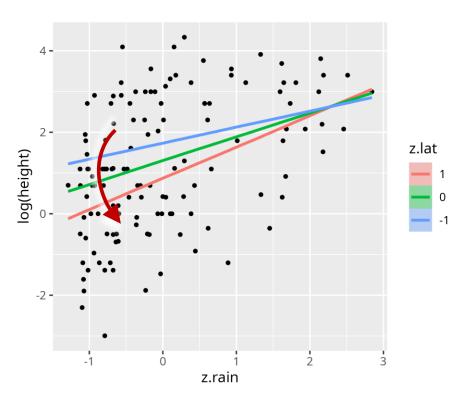


Now let's look at it from the perspective the 2^{nd} predictor *rain*

$$\mu = (b_0 + b_1 \cdot lat) + (b_2 + b_3 \cdot lat) \cdot rain$$

Intercept depends Slope also depends on *lat* on *lat*

 2^{nd} variable shifts intercept by b_2 shifts slope by b_3



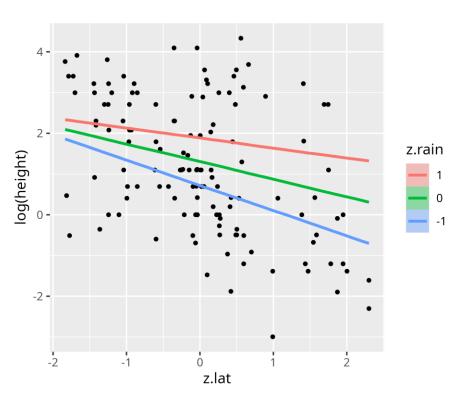
 $log(height) \sim Normal(\mu, \sigma)$ $\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain + b_3 \cdot lat \cdot rain$

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.30	0.15	1.00	1.59	1.00	4804	2827
z.lat z.rain	-0.43	0.16	-0.74	-0.11	1.00	3606	3169
z.rain	0.58	0.18	0.23	0.95	1.00	3153	3169
z.lat:z.rain	n 0.19	0.14	-0.09	0.47	1.00	4010	2982

"Main effects" describe slope of a predictor, when other predictors = 0!

Much simpler interpretation when using **scaled** variables *z*. *lat* and *z*. *rain*



Bayesian stats & linear regression

- Simple solutions for violation of model assumptions
 - Outliers \rightarrow student-t distribution for residuals (heavier tails)
 - Non-constant residual sdev? \rightarrow distributional models $\sigma(x) = \sigma_0 + \sigma_1 x$
 - Spatially / temporally autocorrelated residuals
- Simple comparison of intercepts & slopes ("post-hoc analysis")
- Regularization of effect sizes with priors
- Unbiased estimates even for small datasets
- Multivariate extensions (fit multiple responses at once)

Model selection

Frequentist F-tests

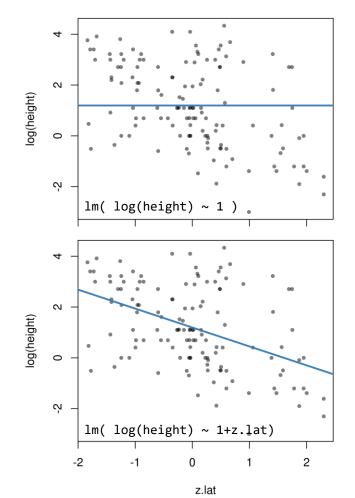
F-tests for (nested) linear models

Compare sums-of-squares of residuals

 \rightarrow Connected to **R**² values (amount of explained variation)

R² always increases when adding predictors

HO: Both models perform equally F-test checks if increase is "significant" or just random $P<0.05 \rightarrow$ reject H0 and accept more complex model



29

Frequentist F-tests

```
lm( log(height) ~ z.lat*z.rain )
```

> summary(lm1)

```
Call:
lm(formula = log(height) ~ z.lat * z.rain, data = globalPlants)
```

Residuals:

Min 1Q Median 3Q Max -3.2619 -0.9048 0.0017 1.0176 3.0977

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
             1.3031
                       0.1490
                               8.745 1.14e-14 ***
                                                    Don't use p-values of main effects
z.lat
            -0.4298
                     0.1581 -2.719 0.00746
                                                    when there are higher-order effects
z.rain 0.5855
                     0.1790
                               3.272 0.00138
                                                    (here interaction) > Use anova-table
z.lat:z.rain 0.1898
                       0.1411 1.345 0.18107
. . .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.435 on 127 degrees of freedom
Multiple R-squared: 0.2653, Adjusted R-squared: 0.2479
```

```
F-statistic: 15.29 on 3 and 127 DF, p-value: 1.5e-08
```

```
~ z.lat*z.rain versus ~ 1
```

 \rightarrow Always tests full model against intercept-only

Frequentist F-tests

```
lm( log(height) ~ z.lat*z.rain )
```

```
> summary( lm1 )
```

```
Call:
lm(formula = log(height) ~ z.lat * z.rain, data = globalPlants)
```

Residuals:

Min 1Q Median 3Q Max -3.2619 -0.9048 0.0017 1.0176 3.0977

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1.3031	0.1490	8.745	1.14e-14 ***	
z.lat	-0.4298	0.1581	-2.719	0.00746	
z.rain	0.5855	0.1790	3.272	0.00138 **	
z.lat:z.rain	0.1898			0.18107	
Signif. code	s: 0'***	' 0.001'**	' 0.01 '	ʻ*' 0.05 ʻ.' 0.1 ʻ'	1
Residual standard error: 1.435 on 127 degrees of freedom					

Multiple R-squared: 0.2653, Adjusted R-squared: 0.2479 F-statistic: 15.29 on 3 and 127 DF, p-value: 1.5e-08

```
~ z.lat*z.rain versus ~ 1
```

 \rightarrow Always tests full model against intercept-only

> anova(lm1)

Analysis of Variance Table

```
Response: log(height)
Df Sum Sq Mean Sq F value Pr(>F)
1: z.lat 1 72.083 72.083 35.0077 2.86e-08 ***
2: z.rain 1 18.612 18.612 9.0388 0.003186 **
3: z.lat:z.rain 1 3.724 3.724 1.8086 0.181073
Residuals 127 261.502 2.059
...
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1: ~ z.lat versus ~ 1
2: ~ z.lat+z.rain versus ~ z.lat
3: ~ z.lat*z.rain versus ~ z.lat
```

\rightarrow Incremently tests more complex models

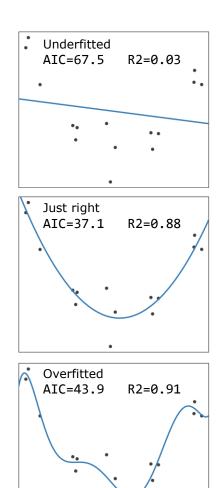
Frequentist AIC

"Akaike information criterion" more flexible than F-tests

 $AIC = -2 \cdot \log(L) + 2 \cdot k$

- Computed from likelihood *L* (remember: *maximum* likelihood)
 Model with higher likelihood-value fits the data better
- Adds a penalty term for model complexity k (number of parameters)
 - \rightarrow Model with lower AIC is better

"Principle of parsimony"



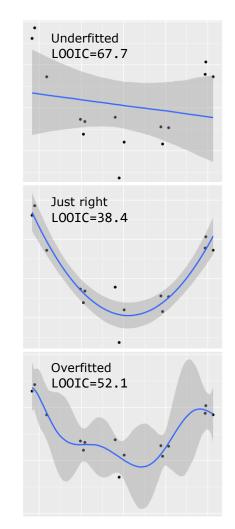
Bayesian LOO

"Leave-one-out cross-validation"

elpd = expected log predictive density

- Computed from likelihood & posterior
- Includes parameter uncertainty & penalizes model complexity
- Estimates for how well the model would predict for a new dataset
 - \rightarrow Model with higher elpd = better

 $LOOIC = -2 \cdot elpd$ (lower values = better) just for convenience for people used to AIC



Bayesian LOO

```
fit2 = brm(log(height)~z.lat+z.rain)
fit3 = brm(log(height)~z.lat*z.rain)
```

> LOO(fit3)

Computed from 4000 by 131 log-likelihood matrix.

E	stimate	SE				
elpd_loo	-235.9	6.9	elpd: larger values are better			
p_loo	3.5	0.4	p: effective number of parameters			
looic	471.8	13.9	looic=-2*elpd			
		▲				
MCSE of el	.pd_loo i	s 0 <mark>.</mark> 0				
MCSE and E	SS estim	ates (assume MCMC draws (r_eff in [0.7, 1.2]).			
All Pareto k estimates are good (k < 0.7). See help('pareto-k-diagnostic') for details.						
See help('	pareto-k	-diag	nostic') for details.			

Estimates come with standard error

> LOO(fit2, fit3)

Model comparisons: elpd_diff se_diff fit3 0.0 0.0 Best elpd shown on top fit2 -3.5 2.4

Difference in elpd is associated with uncertainty

When **elpd_diff>2*se_diff** (approximately), you can be sure the model is better.

Here, both models perform equally under uncertainty, so we would choose the less complex one (fit2)

 \rightarrow Use model comparison with LOO (similar to AIC) in the Bayesian framework

1 Categorical predictor

1 predictor with 2 levels

Example: bird species richness vs. landscape type

Observed bird species richness in different habitats

Each habitat categorized by landscape type:

- Agriculture
- Urban
- Bauxite
- Forest

Start with subset Agriculture / Urban first

Later, we also include area as a predictor

1 predictor with **2** levels

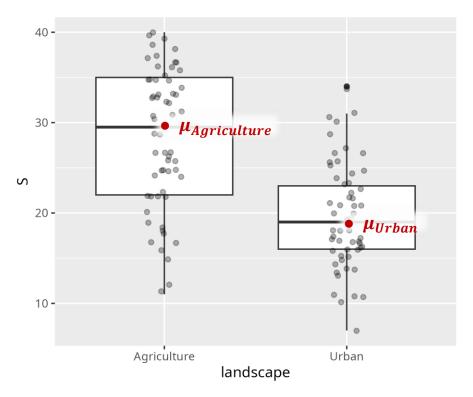
Example: bird species richness vs. landscape type

Stochastic part: $S \sim Normal(\mu, \sigma)$ Deterministic part: $\mu = \mu(landscape)$

Each datapoint is a landscape patch Categorical predictor: *landscape* (2 levels) 3 parameters: $\mu_{Agriculture}$, μ_{Urban} , σ

Estimate and compare group-level means

Frequentist method: t-test Does not compare distributions (overlap). Compares their **means** !



Dummy coding

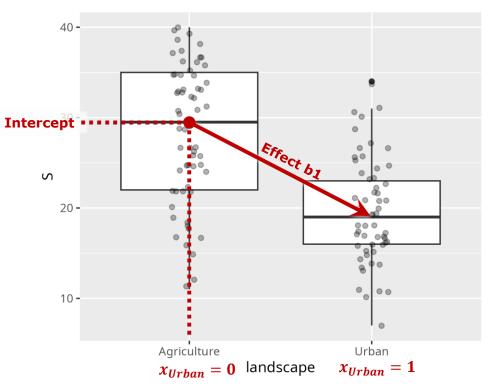
Deterministic part: $\mu = b_0 + b_1 \cdot x_{Urban}$

landscape = *Agriculture* is reference level

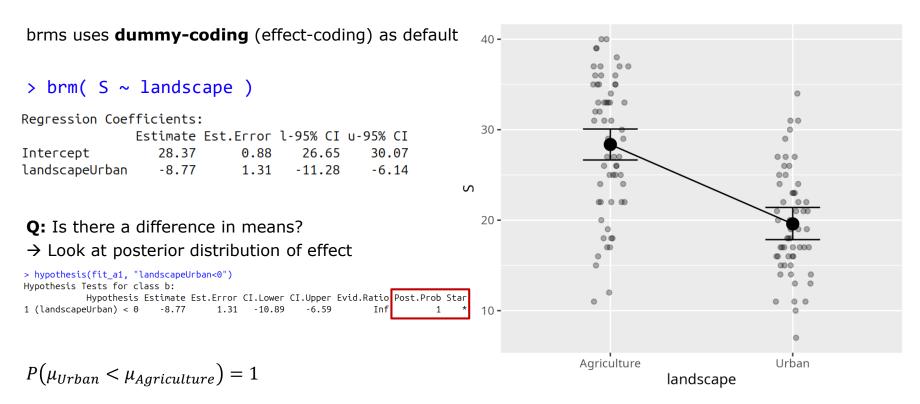
 $x_{Urban} = \begin{cases} 1 \ landscape = Urban \\ 0 \ otherwise \end{cases}$

$$\mu_{Agriculture} = b_0 + b_1 \cdot 0 = b_0$$
$$\mu_{Urban} = b_0 + b_1 \cdot 1 = b_0 + b_1$$

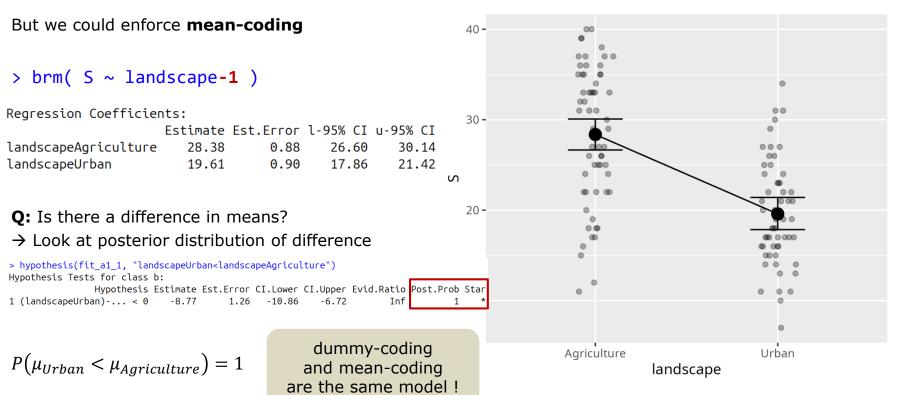
→ Linear model with "intercept" b_0 & "effect" b_1



Model fitting



Model fitting



1 predictor with *K* levels

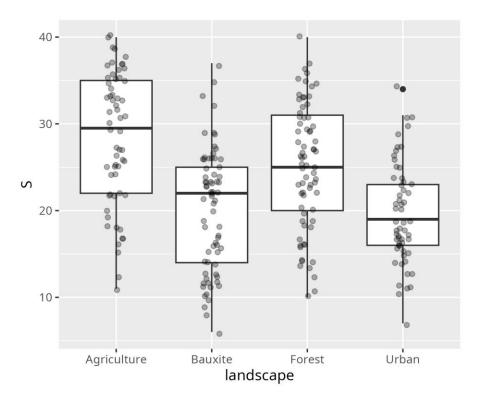
Example: bird species richness vs. landscape type

Stochastic part: $S \sim Normal(\mu, \sigma)$ Deterministic part: $\mu = \mu(landscape)$

Each datapoint is a landscape patch Categorical predictor: *landscape* (4 levels) *K*+1 parameters: $\mu_{Agriculture}$, $\mu_{Bauxite}$, μ_{Forest} , μ_{Urban} , σ

Estimate and compare group-level means

Frequentist method: F-test (ANOVA) Test model against intercept-only model



Dummy coding with *K* levels

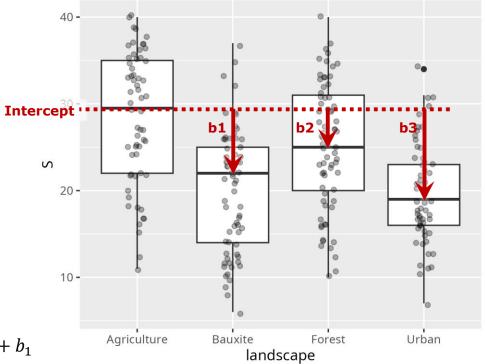
 $\mu = b_0 + b_1 \cdot x_{Bauxite} + b_2 \cdot x_{Forest} \ b_3 \cdot x_{Urban}$

landscape = *Agriculture* is reference level

K-1 dummy variables: $x_{Bauxite} = \begin{cases} 1 \ landscape = Bauxite \\ 0 \ otherwise \end{cases}$ $x_{Forest} = \begin{cases} 1 \ landscape = Forest \\ 0 \ otherwise \end{cases}$ $x_{Urban} = \begin{cases} 1 \ landscape = Urban \\ 0 \ otherwise \end{cases}$

$$\mu_{Agriculture} = b_0 + b_1 \cdot 0 + b_2 \cdot 0 + b_3 \cdot 0 = b_0$$

$$\mu_{Bauxite} = b_0 + b_1 \cdot 1 + b_2 \cdot 0 + b_3 \cdot 0 = b_0 + b_0$$



etc ...

Model fitting with K levels

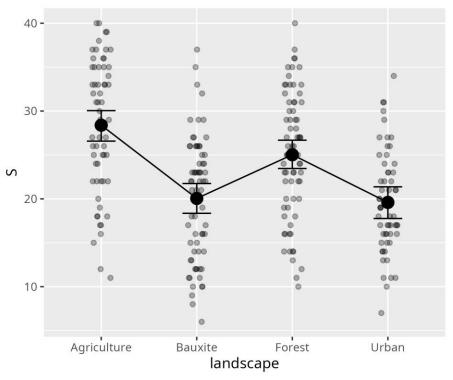
```
> brm( S ~ landscape )
```

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	28.38	0.88	26.58	30.05
landscapeBauxite	-8.33	1.22	-10.63	-5.84
landscapeForest	-3.35	1.21	-5.67	-0.97
landscapeUrban	-8.78	1.29	-11.31	-6.25

- **Q:** Is there a difference in means?
- \rightarrow Individual effects don't give an overall answer
- → Compare against intercept-only model (similar to frequentist F-test)

```
> LOO(fit_landscape, fit_intercept)
```



2 Categorical predictors

2 predictors with K & L levels

Example: S vs. landscape type & area size

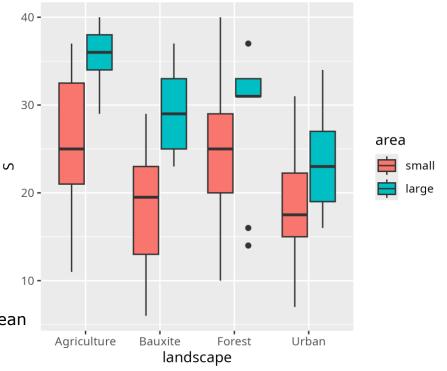
Additive model S ~ landscape + area

Accounts for difference in area size Area effect is the same for all landscape levels

K + L - 1 parameters (+1 for sdev)

Factorial model S ~ landscape * area

Area effect changes over landscape levels ¹¹ Each landscape:size combination is fitted with own mean $K \cdot L$ parameters (+1 for sdev)

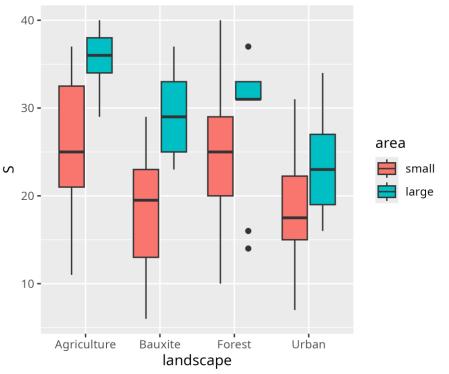


 $\mu = b_0 + b_1 \cdot x_{Bauxite} + b_2 \cdot x_{Forest} \ b_3 \cdot x_{Urban} + b_4 \cdot x_{large}$

landscape = *Agriculture*, *area* = *small* is reference level

intercept
 K-1 dummy variables for landscape
 L-1 dummy variables for area

=K+L-1 variables less than K^*L level combinations \rightarrow Will not fit independent group-level means



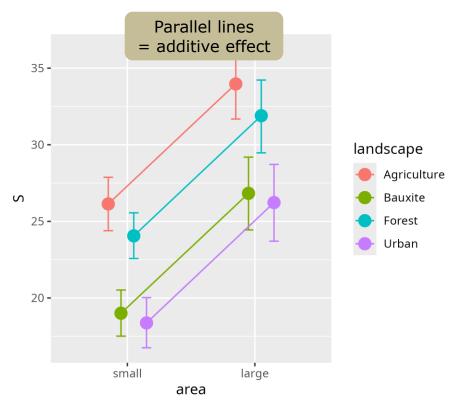
> brm(S ~ landscape + area)

Regression Coefficients:

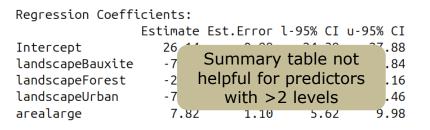
	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	26.14	0.89	24.39	27.88
landscapeBauxite	-7.13	1.15	-9.36	-4.84
landscapeForest	-2.07	1.14	-4.25	0.16
landscapeUrban	-7.75	1.20	-10.10	-5.46
arealarge	7.82	1.10	5.62	9.98

- **Q:** Is there an additional effect of patch size?
- \rightarrow Strong effect of area

7.82 more species in large patches (on avg.)



> brm(S ~ landscape + area)

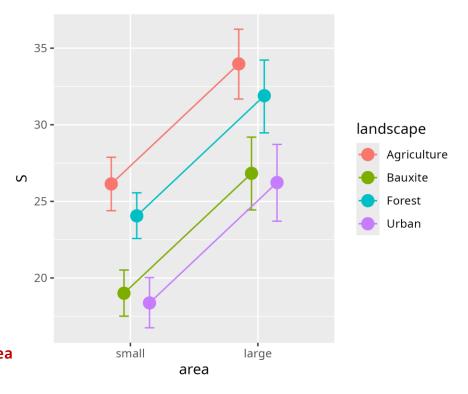


Q: Is there an additional effect of patch size?

\rightarrow Model comparison

> LOO(fit_additive, fit_landscape)

Model comparisons: elpd_diff se_diff Yes, S~landscape+area fit_additive 0.0 0.0 is a better model than fit_landscape -23.7 6.9 S~landscape



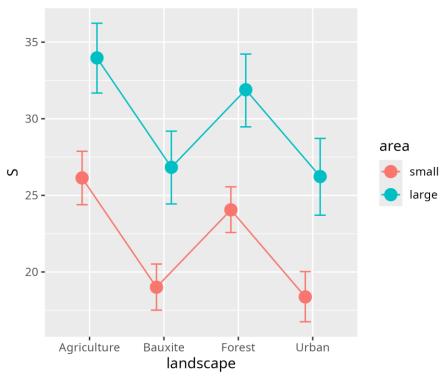
> brm(S ~ landscape + area)

Regression Coeffi	cients:			
	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	26	C		~7.88
landscapeBauxite	-7	Summary		•0-
landscapeForest	- 2	nelpful for	· predicto	D rs .16
landscapeUrban	- 7	with >	2 levels	.46
arealarge	7.82	1.10	5.62	9.98

Q: Are there differences between landscapes, when controlling for area size?

> LOO(fit_additive, fit_area)

Model comparisons: elpd_diff se_diff Yes, S~landscape+area fit_additive 0.0 0.0 is a better model than fit_area -26.9 7.1 S~area



Factorial model

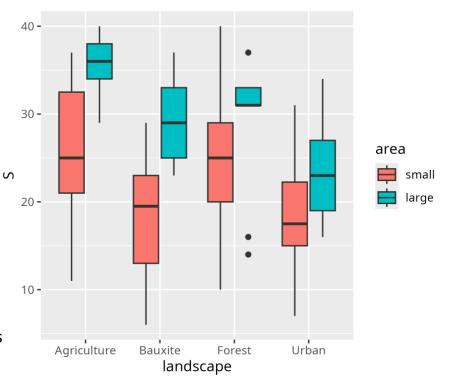
 $\mu = b_0 + b_1 \cdot x_{Bauxite} + b_2 \cdot x_{Forest} \ b_3 \cdot x_{Urban} + b_4 \cdot x_{large} + b_5 \cdot x_{Bauxite, large} + b_6 \cdot x_{Forest, large} + b_7 \cdot x_{Urban, large}$

landscape = *Agriculture*, *area* = *small* is reference level

intercept
 K-1 dummy variables for landscape
 L-1 dummy variables for area
 (K-1)*(L-1) dummy variables for landscape:area

= K^*L variables in total

 \rightarrow Fitting independent means to all level combinations



 $\mu = \mu(landscape, area)$

Factorial model

> brm(S ~ landscape * area)

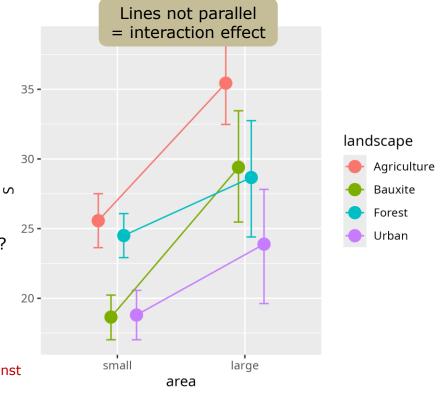
Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	25.56	0.97	23.63	27.51
landscapeBauxite	-6.93	1.27	-9.43	-4.47
landscapeForest	-1.06	1.24	-3.50	1.37
landscapeUrban	-6.78	1.35	-9.44	-4.08
arealarge	9.89	1.81	6.32	13.47
landscapeBauxite:arealarge	0.87	2.87	-4.56	6.46
landscapeForest:arealarge	-5.76	2.91	-11.69	-0.29
landscapeUrban:arealarge	-4.81	2.91	-10.52	0.97

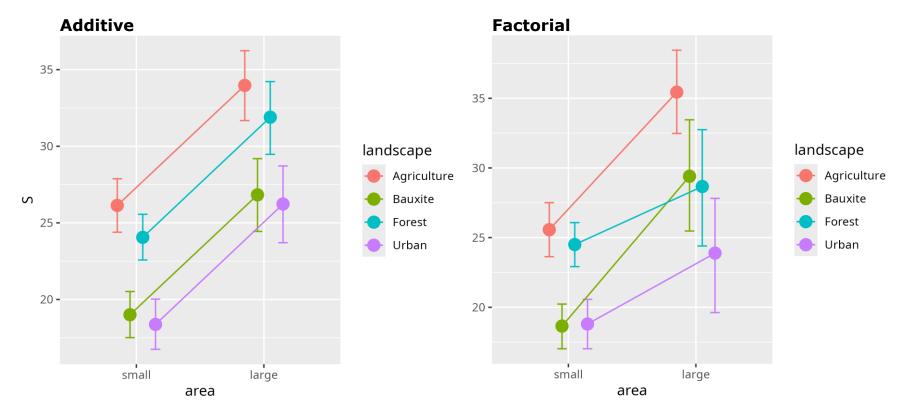
Q: Does area effect change between landscape levels?

> LOO(fit_factorial, fit_additive)

Model comparisons: elpd_diff se_diff No strong evidence for fit_factorial 0.0 0.0 S~landscape*area against fit_additive -0.7 2.5 S~landscape+area



Factorial vs additive



No strong evidence for interaction found \rightarrow select additive as the best model

Post-hoc analysis

What is post-hoc analysis?

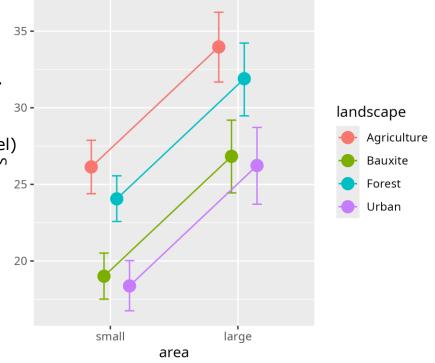
Model comparison (LOO)

tells you **IF** there is a difference between group-levels.

Post-hoc analysis (**after** selecting an appropriate model) tells you **WHAT** the difference is.

Analysis is **model-based**.

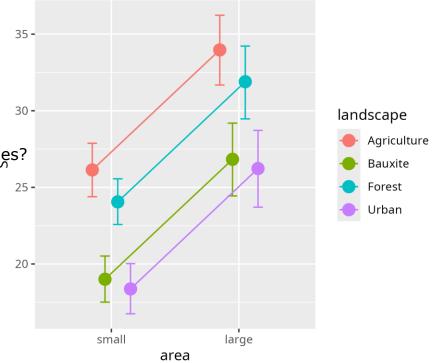
Do not just compute empirical means from the data.



What is post-hoc analysis?

Answer questions like:

- What is the mean species richness in small areas?
 → Average over landscapes.
- What is the mean species richness in urban landscapes?
 → Average over area sizes.
- What is the mean difference between urban and agricultural landscapes?
- And what are all their associated uncertainties?



Bayesian post-hoc analysis

Make predictions & compute their average or difference etc depending on the question.

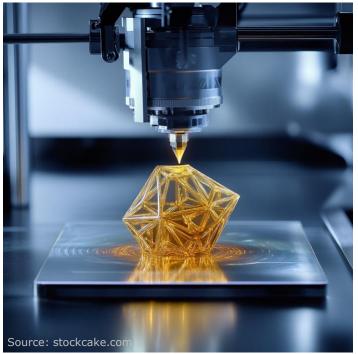
Remember: everything is a distribution!

• For each sample \boldsymbol{k} of the posterior ($k = 1 \dots 1000$)

use it's predictions, compute what's required, e.g. $a_k - b_k$

- That is a sample of posterior distribution for $m{a}-m{b}$
- Compute mean, standard deviation, quantiles, etc
- \rightarrow The **emmeans** package can automate these steps!
- → Alternative: marginaleffects package. Powerful but a bit more complex

The Bayesian 3D printer



Post-hoc analysis: 1 predictor

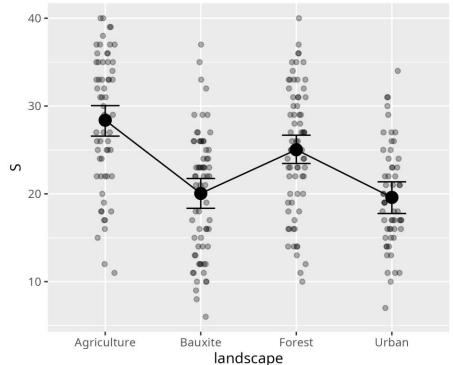
> brm(S ~ landscape)

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	28.38	0.88	26.58	30.05
landscapeBauxite	-8.33	1.22	-10.63	-5.84
landscapeForest	-3.35	1.21	-5.67	-0.97
landscapeUrban	-8.78	1.29	-11.31	-6.25

Q: What are the predicted means (and their uncertainties)?

<pre>> emmeans(fit_landscape, "landscape")</pre>				
landscape	emmean	lower.HPD	upper.HPD	
Agriculture	28.4	26.6	30.0	
Bauxite	20.0	18.5	21.8	
Forest	25.0	23.4	26.6	
Urban	19.6	17.8	21.4	



Post-hoc analysis: 1 predictor

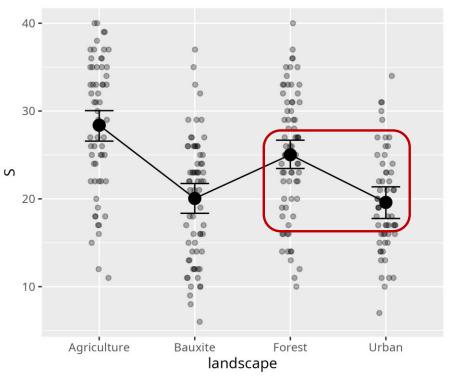
> brm(S ~ landscape)

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	28.38	0.88	26.58	30.05
landscapeBauxite	-8.33	1.22	-10.63	-5.84
landscapeForest	-3.35	1.21	-5.67	-0.97
landscapeUrban	-8.78	1.29	-11.31	-6.25

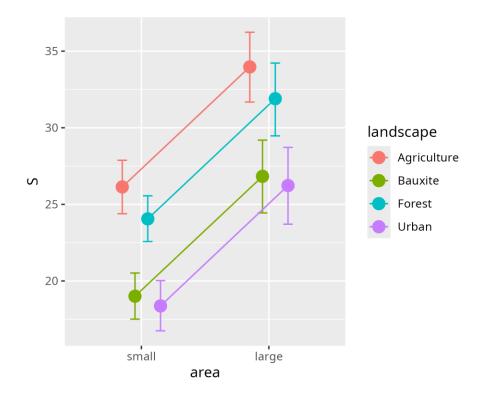
Q: What is the difference between forest & urban?

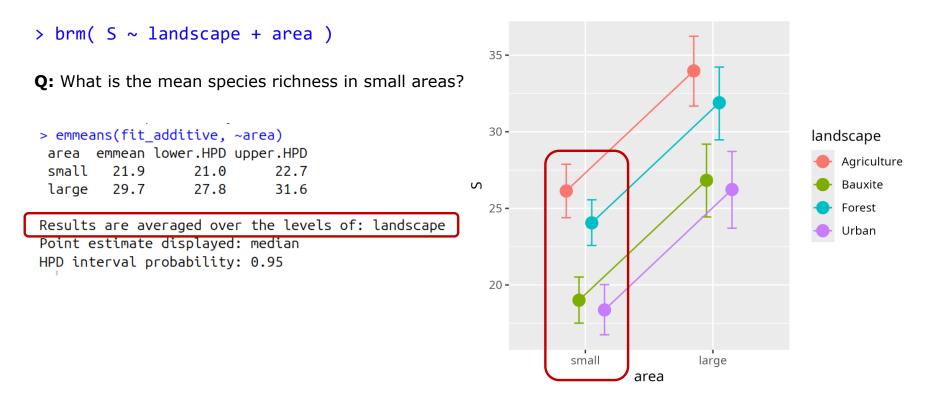
<pre>> emmeans(fit_landscape, "landscape") > pairs()</pre>				
contrast	estimate	lower.HPD	upper.HPD	
Agriculture - Bauxite	8.35	5.857	10.56	
Agriculture - Forest	3.30	0.966	5.63	
Agriculture - Urban	8.73	6.290	11.24	
Bauxite - Forest	-5.00	-7.217	-2.60	
Bauxite - Urban	0.45	-2.232	2.86	
Forest - Urban	5.45	2.940	7.83	

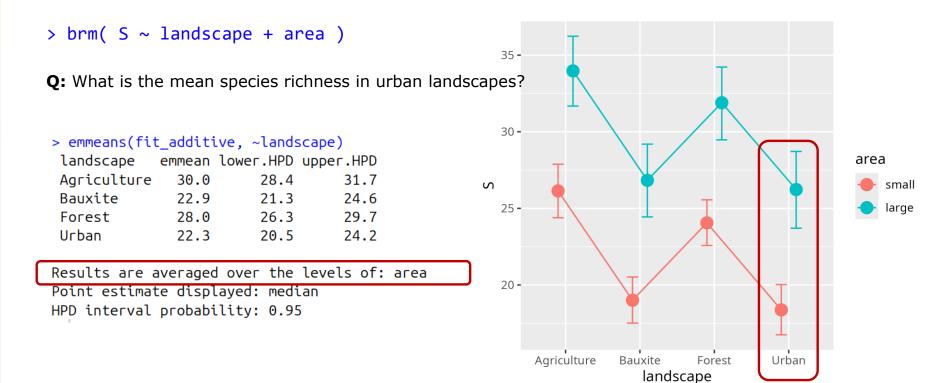


- > brm(S ~ landscape + area)
- **Q:** What are group-level means?

<pre>> emmeans(fit_additive, ~area*landscape)</pre>						
агеа	landscape	emmean	lower.HPD	upper.HPD		
small	Agriculture	26.2	24.4	27.9		
large	Agriculture	33.9	31.7	36.1		
small	Bauxite	19.0	17.6	20.6		
large	Bauxite	26.8	24.6	29.2		
small	Forest	24.1	22.6	25.6		
large	Forest	31.9	29.5	34.3		
small	Urban	18.4	16.8	20.2		
large	Urban	26.2	23.8	28.5		



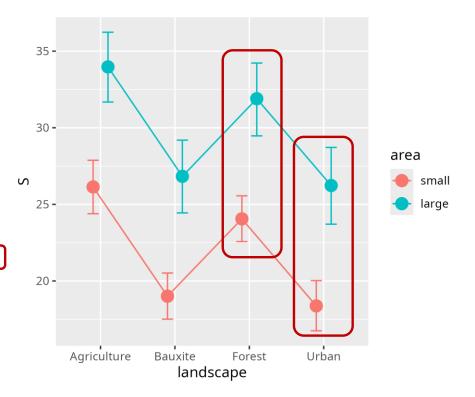




- > brm(S ~ landscape + area)
- **Q:** What is the mean difference between urban and forest landscapes?

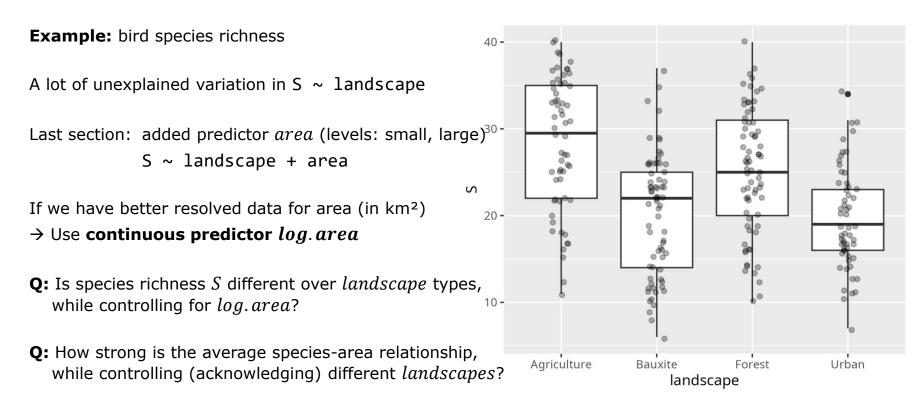
<pre>> emmeans(fit_additive, ~landscape) > pairs()</pre>					
contrast	estimate	lower.HPD	upper.HPD		
Agriculture - Bauxite	7.128	4.9378	9.35		
Agriculture - Forest	2.073	-0.0856	4.36		
Agriculture - Urban	7.779	5.4187	10.13		
Bauxite - Forest	-5.064	-7.1364	-2.98		
Bauxite - Urban	0.653	-1.6066	2.70		
Forest - Urban	5.721	3.4428	7.91		

Results are averaged over the levels of: area Point estimate displayed: median HPD interval probability: 0.95



Categorical & continuous predictors (ANCOVA)

Categorical & continuous predictor



Categorical & continuous predictor

Example: S vs. landscape type & log.area

Fit a regression line to each landscape level

Additive model S ~ landscape + log.area

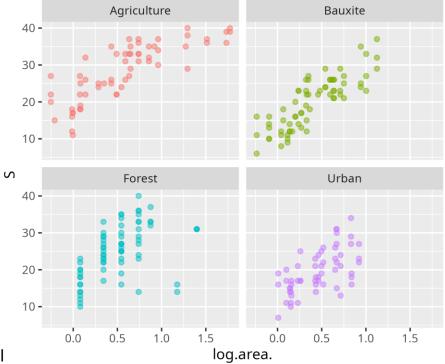
Slope (log.area) independent of landscape \rightarrow identical slope

Individual intercepts for each landscape level

Factorial model S ~ landscape * log.area

Slope (log.area) depends on landscape

Individual intercepts & slopes for each landscape level



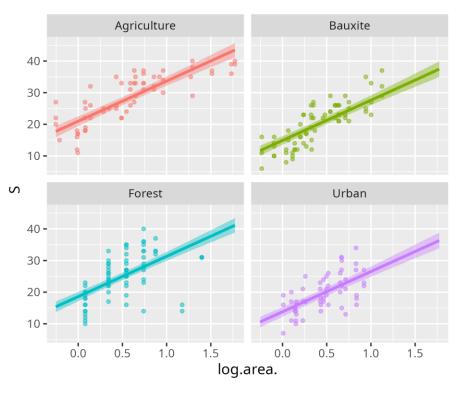
S ~ landscape + log.area

 $\mu = \alpha(landscape) + \beta \cdot log.area$

4 intercepts: $\alpha_{Agriculture}, \alpha_{Bauxite}, \alpha_{Forest}, \alpha_{Urban}$ 1 slope: β 1 sdev: σ

Dummy-coding of intercepts:

$$\mu = a_0 + a_1 \cdot x_{Bauxite} + a_2 \cdot x_{Forest} + a_3 \cdot x_{Urban} + \beta \cdot log.area$$



```
> brm(S ~ landscape + log.area)
```

Regression Coefficients: Estimate Est.Error l-95% CI u-95% CI Intercept 20.96 0.79 19.42 22.48 landscapeBauxite -6.06 0.90 -7.77 -4.23 landscapeForest -2.34 -0.56 0.90 -4.08 landscapeUrban -7.16 0.93 -9.00 -5.41 log.area. 12.71 0.81 11.09 14.29

Q: Is there a difference between landscape types, while accounting for area size?

```
LOO(fit_additive, fit_logarea)

Model comparisons:

    elpd_diff se_diff

fit_additive 0.0 0.0

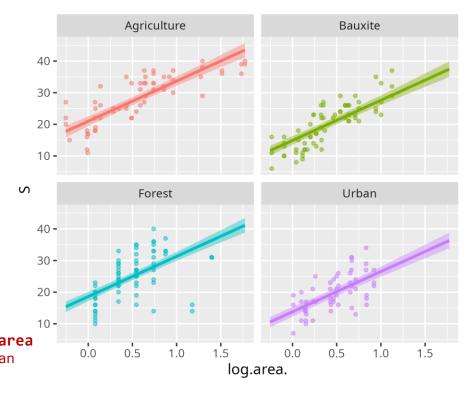
fit_logarea -31.8 7.7

Yes,

S~landscape+logarea

is a better model than

S~logarea
```

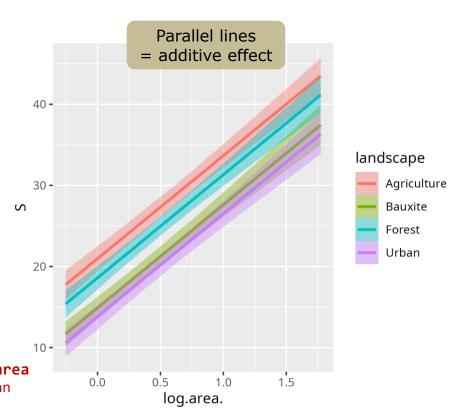


```
> brm(S ~ landscape + log.area)
```

Regression Coefficients:				
	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	20.96	0.79	19.42	22.48
landscapeBauxite	-6.06	0.90	-7.77	-4.23
landscapeForest	-2.34	0.90	-4.08	-0.56
landscapeUrban	-7.16	0.93	-9.00	-5.41
log.area.	12.71	0.81	11.09	14.29

Q: Is there a difference between landscape types, while accounting for area size?





> brm(S ~ landscape + log.area)

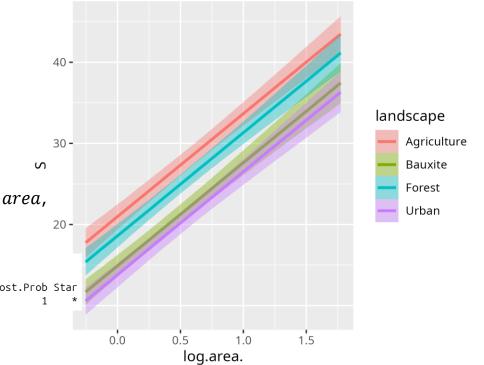
Regression Coefficients:				
	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	20.96	0.79	19.42	22.48
landscapeBauxite	-6.06	0.90	-7.77	-4.23
landscapeForest	-2.34	0.90	-4.08	-0.56
landscapeUrban	-7.16	0.93	-9.00	-5.41
log.area.	12.71	0.81	11.09	14.29

Q: Is there a positive relation between *S* and *log.area*, while acknowledging different *landscapes*?

> hypothesis(fit_additive, "log.area.>0")
Hypothesis Tests for class b:
 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star
1 (log.area.) > 0 12.71 0.81 11.41 14.03 Inf 1 *

Yes, posterior distribution of slope positive

Alternatively, you could also do a model comparison (LOO)



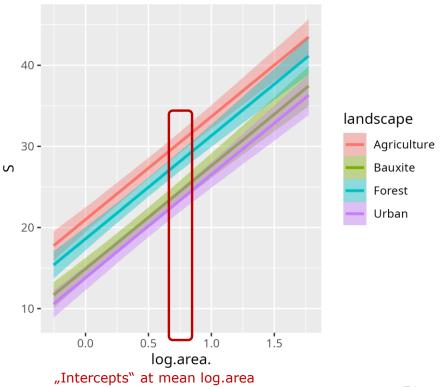
Post-hoc analysis

> brm(S ~ landscape + log.area)

Q: What are mean intercepts and pairwise differences between landscape types?

	•			
>	emmeans(fit	t_additi	ive, ~lands	scape)
	landscape	emmean	lower.HPD	upper.HPD
	Agriculture	27.1	25.8	28.4
	Bauxite	21.1	19.9	22.4
	Forest	24.8	23.6	25.9
	Urban	20.0	18.7	21.3

contrast	estimate	lower.HPD	upper.HPD	
Agriculture - Bauxite	6.05	4.301	7.80	
Agriculture - Forest	2.35	0.648	4.13	
Agriculture - Urban	7.14	5.426	9.02	
Bauxite - Forest	-3.71	-5.312	-1.99	
Bauxite - Urban	1.10	-0.557	3.01	
Forest - Urban	4.78	3.104	6.62	



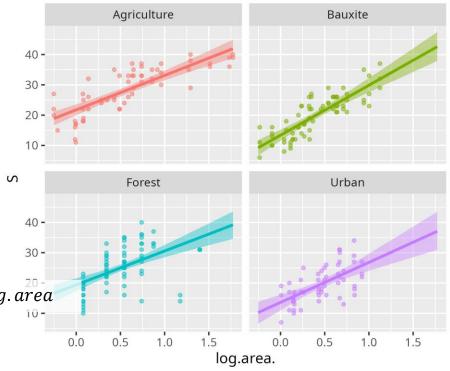
S ~ landscape * log.area

 $\mu = \alpha(landscape) + \beta(landscape) \cdot log. area$

4 intercepts:	$\alpha_{Agriculture}, \alpha_{Bauxite}, \alpha_{Forest}, \alpha_{Urban}$
4 slopes:	$\beta_{Agriculture}, \beta_{Bauxite}, \beta_{Forest}, \beta_{Urban}$
1 sdev:	σ

Dummy-coding of intercepts & slopes:

$$\mu = a_0 + a_1 \cdot x_{Bauxite} + a_2 \cdot x_{Forest} + a_3 \cdot x_{Urban} + (b_0 + b_1 \cdot x_{Bauxite} + b_2 \cdot x_{Forest} + b_3 \cdot x_{Urban}) \cdot log.$$



> brm(S ~ landscape * log.area)

Regression Coefficients:

	Estimate Es	st.Error	l-95% CI	u-95% CI
Intercept	21.74	0.92	19.96	23.54
landscapeBauxite	Summa	ary tabl	e not	-5.74
landscapeForest		0.47		
landscapeUrban	helpful for predictors with >2 levels			-5.11
log.area.	with	>2 lev	eis	13.64
landscapeBauxite:log.area	a. 5.10	2.08	1.01	9.21
landscapeForest:log.area.	-0.23	2.10	-4.42	3.93
landscapeUrban:log.area.	1.86	2.60	-3.27	7.08

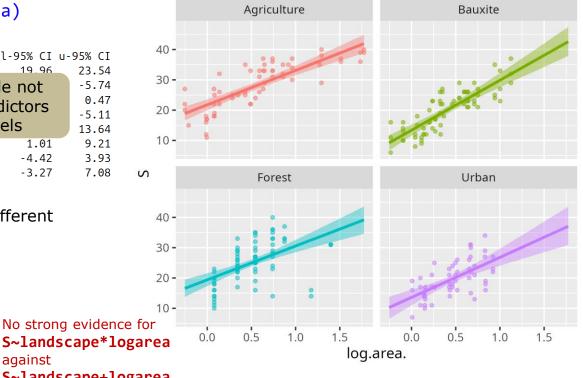
Q: Is the species-area relationship different between landscape types?

LOO(fit factorial, fit additive)

Model comparisons: elpd_diff_se_diff fit_factorial 0.0

fit_additive -0.4

S~landscape*logarea 0.0 against 2.4 S~landscape+logarea



> brm(S ~ landscape * log.area)

Regression Coefficients:

	Estimate Es	st.Error 1	l-95% CI ι	J-95% CI
Intercept	21.74	0.92	19.96	23.54
landscapeBauxite	Summa	ary table	e not	-5.74
landscapeForest		0.47		
landscapeUrban	helpful for predictors with >2 levels			-5.11
log.area.		>2 leve	eis	13.64
landscapeBauxite:log.area	. 5.10	2.08	1.01	9.21
landscapeForest:log.area.	-0.23	2.10	-4.42	3.93
landscapeUrban:log.area.	1.86	2.60	-3.27	7.08

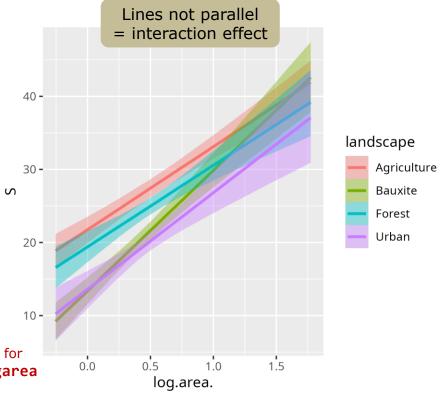
Q: Is the species-area relationship different between landscape types?

L00(fit_factorial, fit_additive)

Model comparisons:

	elpd_diff	se_diff
fit_factorial	0.0	0.0
fit_additive	-0.4	2.4

No strong evidence for S~landscape*logarea against S~landscape+logarea



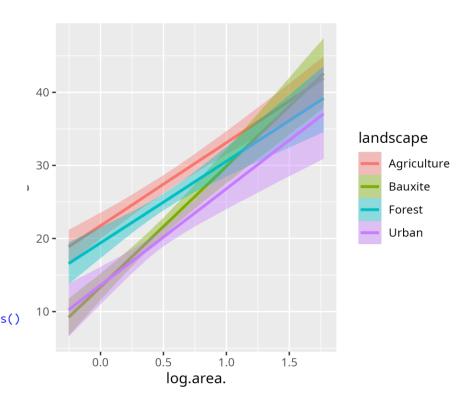
Post-hoc analysis (If there was support for this model)

> brm(S ~ landscape * log.area)

Q: What are the predicted slopes?

<pre>> emtrends(fit_factorial, ~landscape, var="log.area.")</pre>						
landscape	log.areatrend	lower.HPD	upper.HPD			
Agriculture	11.4	9.12	13.8			
Bauxite	16.5	13.26	19.9			
Forest	11.1	7.81	14.7			
Urban	13.2	8.77	18.1			
landscape Agriculture Bauxite Forest	log.areatrend 11.4 16.5 11.1	lower.HPD 9.12 13.26 7.81	upper.HPD 13.8 19.9 14.7			

Point estimate displayed: median HPD interval probability: 0.95 > emtrends(fit_factorial, ~landscape, var="log.area.") |> pairs() contrast estimate lower.HPD upper.HPD Agriculture - Bauxite -5.066 -9.224 -1.04 Agriculture - Forest 0.224 -3.914 4.42 Agriculture - Urban -1.867 -7.125 3.19 Bauxite - Forest 5.325 0.292 10.10 Bauxite - Urban 3.206 -2.198 9.12 Forest - Urban -2.070-8.073 3.42



Summary

- Regression, ANOVA, ANCOVA are just linear models
- Categorical variables can often be expressed by "dummy-coding" or by "effects-coding", brms uses dummy-coding as default
- In Bayesian stats, linearity is not that important
- But always check your model assumptions (e.g. PPC, check_model)
- Research question should guide you which model to fit and which "tests" to perform
- "Test" just means a statement about a research question, quantified through posterior distribution of effect sizes, model comparisons, or post-hoc analysis
- brms flexible and "all-in-one" package

Further reading

Bürkner, P. (2024). The brms Book [in progress]. <u>https://paulbuerkner.com/software/brms-book/</u>

Cinelli, C., Forney, A., & Pearl, J. (2024). A crash course in good and bad controls. *Sociological Methods & Research*, 53(3), 1071–1104. <u>https://doi.org/10.1177/00491241221099552</u>

Conn, P. B., Johnson, D. S., Williams, P. J., Melin, S. R., & Hooten, M. B. (2018). A guide to Bayesian model checking for ecologists. *Ecological Monographs*, 88(4), 526–542. <u>https://doi.org/10.1002/ecm.1314</u>

Fieberg, J. (2024). Statistics 4 Ecologists. <u>https://statistics4ecologists-v2.netlify.app/</u> [Chapters 1,3]

Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and Other Stories. *Cambridge University Press*. <u>https://doi.org/10.1017/9781139161879</u> [Chapters 6-12]

Inchausti, P. (2023). Statistical Modeling With R: a dual frequentist and Bayesian approach for life scientists. *Oxford University Press*. [Chapters 4-7]

Kery, M. & Kellner, F. (2024): Applied Statistical Modelling for Ecologists. Elsevier. [Chapters 5-9]