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In this lecture

• What is a linear model?

• Continuous predictors (Regression)

• Categorical predictors (ANOVA)

• Categorical & continuous predictors (ANCOVA)

In-between:

• Model selection

• Post-hoc analysis



What is a linear model?
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Linear functions

Linear in 𝒙 (predictor)

𝑓 𝑥 = 𝑎 + 𝑏 ⋅ 𝒙

Additive with constant 𝑎 (intercept) 

Multiplication only with constant 𝑏 (slope)

Some nonlinear functions:

1/𝑥 𝑥2 𝑥 exp 𝑥 log 𝑥

𝑎 + 𝑏 ⋅ 𝑥
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Linear functions

Extend to multiple predictors 𝒙𝟏, 𝒙𝟐, …

𝑓 𝑥 = 𝑏0 + 𝑏1 ⋅ 𝒙𝟏 + 𝑏2 ⋅ 𝒙𝟐
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Linear statistical models

Linear in 𝒃 (parameters) and 

Gaussian random errors 𝜀 (normally distributed)

𝑦(𝑥) = 𝒃𝟎 + 𝒃𝟏 ⋅ 𝑥 + 𝜺

𝑦(𝑥) = 𝒃𝟎 + 𝒃𝟏 ⋅ 𝑥1 + 𝒃𝟐 ⋅ 𝑥2 + 𝜺

Nonlinear in 𝑏, for example:

𝑦(𝑥) = 𝒃𝟎 + 𝑥𝒃𝟏 + 𝜺

𝑦(𝑥) = 𝒃𝟎 + exp 𝒃𝟏 ⋅ 𝑥 + 𝜺

Linear statistical models in the 
frequentist world: 

Analytical solution (formula) for 
parameter estimates

Easy computation with lm()

Nonlinear models in the 
frequentist world: 

Maximum likelihood estimation
(iterative algorithm)
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Linear statistical models

Quadratic (polynomial) relationships

𝑦 = 𝒃𝟎 + 𝒃𝟏 ⋅ 𝑥 + 𝒃𝟐 ⋅ 𝑥
2 + 𝜺

= 𝒃𝟎 + 𝒃𝟏 ⋅ 𝑥1 + 𝒃𝟐 ⋅ 𝑥2 + 𝜀

Interaction effects

𝑦 = 𝒃𝟎 + 𝒃𝟏 ⋅ 𝑥1 + 𝒃𝟐 ⋅ 𝑥2 + 𝒃𝟑 ⋅ 𝑥1 ⋅ 𝑥2 + 𝜺

= 𝒃𝟎 + 𝒃𝟏 ⋅ 𝑥1 + 𝒃𝟐 ⋅ 𝑥2 + 𝒃𝟑 ⋅ 𝑥3 + 𝜺

→ Some nonlinear relationships can be described
with linear statistical models (linear in the parameters)

define 

𝒙𝟏 = 𝒙
𝒙𝟐 = 𝒙𝟐

define 𝒙𝟑 = 𝒙𝟏𝒙𝟐
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Linear statistical models

Transformation of response variable

log 𝑦 = 𝒃𝟎 + 𝒃𝟏 ⋅ 𝑥 + 𝜺

Attention: model becomes multiplicative

When back transforming to 𝑦-scale

𝑦 = exp 𝑏0 + 𝑏1 ⋅ 𝑥 + 𝜀
= exp 𝑏0 ⋅ exp 𝑏1𝑥 ⋅ exp 𝜀

= ෨𝑏0 ⋅ exp 𝑏1𝑥 ⋅ ǁ𝜀

→ Sometimes statistical models can be “linearized” 
by transformation
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https://lindeloev.github.io/tests-as-linear/


10

Bayesian stats & linearity

Linearity actually not that important 

MCMC does not care if deterministic model part is 

linear 𝜇(𝑥) = 𝑎 + 𝑏 ⋅ 𝑥

or nonlinear 𝜇(𝑥) =
𝑎⋅𝑥

𝑏+𝑥

However, nonlinear (and also polynomial) models should 

only be considered when there is a good reason, 

not just because they would fit the data better.

Principle of parsimony, Occam's razor (14th century): 

“Entities must not be multiplied beyond necessity” 

Source: stockcake.com

The Bayesian 3D printer



Continuous predictors
(Linear regression)
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Single predictor

Example: Latitudinal gradient of plant size

Global database with:  

• log10 of plant height as response

• latitude as predictor

Later: include precipitation as environmental predictor
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Single predictor

Example: Latitudinal gradient of plant size

Stochastic part: log ℎ𝑒𝑖𝑔ℎ𝑡 ~Normal(𝜇, 𝜎)

Deterministic part: 𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑙𝑎𝑡

> brm(log(height)~lat, data=globalPlants)
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Single predictor

Example: Latitudinal gradient of plant size

Stochastic part: log ℎ𝑒𝑖𝑔ℎ𝑡 ~Normal(𝜇, 𝜎)

Deterministic part: 𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑙𝑎𝑡

> brm(log(height)~lat, data=globalPlants)

Intercept

𝒍𝒂𝒕 = 𝟎
Equator 
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Single predictor

Example: Latitudinal gradient of plant size

scale predictor (→ mean = 0, sdev = 1)

𝑧. 𝑙𝑎𝑡 =
𝑙𝑎𝑡−mean 𝑙𝑎𝑡

sdev 𝑙𝑎𝑡
„z-score“

Deterministic part: 𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑧. 𝑙𝑎𝑡

> brm(log(height)~z.lat)
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Single predictor

Example: Latitudinal gradient of plant size

scale predictor (→ mean = 0, sdev = 1)

𝑧. 𝑙𝑎𝑡 =
𝑙𝑎𝑡−mean 𝑙𝑎𝑡

sdev 𝑙𝑎𝑡
„z-score“

Deterministic part: 𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑧. 𝑙𝑎𝑡

> brm(log(height)~z.lat)

Now intercept is predicted log ℎ𝑒𝑖𝑔ℎ𝑡

when predictor 𝑙𝑎𝑡 is at its average and 

slope is effect for 1 sdev increment of 𝑙𝑎𝑡

𝒛. 𝒍𝒂𝒕 = 𝟎
mean latitude  

Intercept
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Multiple predictors

Example: Latitudinal gradient of plant size

Stochastic part: log ℎ𝑒𝑖𝑔ℎ𝑡 ~Normal(𝜇, 𝜎)

Deterministic part: 𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑙𝑎𝑡 + 𝒃𝟐 ⋅ 𝒓𝒂𝒊𝒏

> brm(log(height)~z.lat+z.rain) 𝑌

𝑋1

𝑋2

𝒃𝟏

𝒃𝟐
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Multiple predictors

Example: Latitudinal gradient of plant size

Stochastic part: log ℎ𝑒𝑖𝑔ℎ𝑡 ~Normal(𝜇, 𝜎)

Deterministic part: 𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑙𝑎𝑡 + 𝑏2 ⋅ 𝑟𝑎𝑖𝑛

> brm(log(height)~z.lat+z.rain)
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Multiple predictors

Example: Latitudinal gradient of plant size

Stochastic part: log ℎ𝑒𝑖𝑔ℎ𝑡 ~Normal(𝜇, 𝜎)

Deterministic part: 𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑙𝑎𝑡 + 𝑏2 ⋅ 𝑟𝑎𝑖𝑛

> brm(log(height)~z.lat+z.rain)

when both 
predictors =0

Intercept
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Multiple predictors

Example: Latitudinal gradient of plant size

Stochastic part: log ℎ𝑒𝑖𝑔ℎ𝑡 ~Normal(𝜇, 𝜎)

Deterministic part: 𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑙𝑎𝑡 + 𝑏2 ⋅ 𝑟𝑎𝑖𝑛

𝜇 = 𝑏0 + 𝒃𝟐 ⋅ 𝑟𝑎𝑖𝑛 + 𝑏1 ⋅ 𝑙𝑎𝑡

2nd variable shifts intercept by 𝑏2

Simpler interpretation when using

scaled variables 𝑧. 𝑙𝑎𝑡 and 𝑧. 𝑟𝑎𝑖𝑛

Intercept depends 

on 𝒓𝒂𝒊𝒏
Slope 

constant
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Multiple predictors

Example: Latitudinal gradient of plant size

Stochastic part: log ℎ𝑒𝑖𝑔ℎ𝑡 ~Normal(𝜇, 𝜎)

Deterministic part: 𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑙𝑎𝑡 + 𝑏2 ⋅ 𝑟𝑎𝑖𝑛

𝜇 = 𝑏0 + 𝒃𝟏 ⋅ 𝑙𝑎𝑡 + 𝑏2 ⋅ 𝑟𝑎𝑖𝑛

1st variable shifts intercept by 𝑏1

Intercept depends 

on 𝒍𝒂𝒕
Slope 

constant

Now let‘s look at it from the perspective 

the 2nd predictor 𝑟𝑎𝑖𝑛
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Multiple predictors: multicollinearity

Example: Latitudinal gradient of plant size

Stochastic part: log ℎ𝑒𝑖𝑔ℎ𝑡 ~Normal(𝜇, 𝜎)

Deterministic part: 𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑙𝑎𝑡 + 𝑏2 ⋅ 𝑟𝑎𝑖𝑛

What if predictor variables are correlated ?

Here 𝑙𝑎𝑡 influences 𝑟𝑎𝑖𝑛 !

• A bit of multicollinearity is OK.

• But be aware of interpretation of effects!

• 𝒃𝟏 is effect 𝒙𝟏 → 𝒚, while 𝒙𝟐 held constant!

• Slopes describe direct (isolated) effects only, not total effect

• Often the problem when dealing with observational data
instead controlled experiments.

𝑌

𝑋1

𝑋2

𝒃𝟏

𝒃𝟐

?

→ Cinelli, Forney & Pearl (2024). A 

crash course in good and bad controls
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Multiple predictors & interaction

Example: Latitudinal gradient of plant size

log ℎ𝑒𝑖𝑔ℎ𝑡 ~Normal 𝜇, 𝜎

𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑙𝑎𝑡 + 𝑏2 ⋅ 𝑟𝑎𝑖𝑛 + 𝒃𝟑 ⋅ 𝒍𝒂𝒕 ⋅ 𝒓𝒂𝒊𝒏

> brm(log(height)~z.lat*z.rain)
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Multiple predictors & interaction

Example: Latitudinal gradient of plant size

log ℎ𝑒𝑖𝑔ℎ𝑡 ~Normal 𝜇, 𝜎

𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑙𝑎𝑡 + 𝑏2 ⋅ 𝑟𝑎𝑖𝑛 + 𝒃𝟑 ⋅ 𝒍𝒂𝒕 ⋅ 𝒓𝒂𝒊𝒏

𝜇 = 𝑏0 + 𝑏2 ⋅ 𝑟𝑎𝑖𝑛 + 𝑏1 + 𝒃𝟑 ⋅ 𝑟𝑎𝑖𝑛 ⋅ 𝑙𝑎𝑡

2nd variable shifts intercept by 𝑏2
shifts slope by 𝑏3

Intercept depends 

on 𝒓𝒂𝒊𝒏
Slope also depends 

on 𝒓𝒂𝒊𝒏
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Multiple predictors & interaction

Example: Latitudinal gradient of plant size

log ℎ𝑒𝑖𝑔ℎ𝑡 ~Normal 𝜇, 𝜎

𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑙𝑎𝑡 + 𝑏2 ⋅ 𝑟𝑎𝑖𝑛 + 𝒃𝟑 ⋅ 𝒍𝒂𝒕 ⋅ 𝒓𝒂𝒊𝒏

𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑙𝑎𝑡 + 𝑏2 + 𝒃𝟑 ⋅ 𝑙𝑎𝑡 ⋅ 𝑟𝑎𝑖𝑛

2nd variable shifts intercept by 𝑏2
shifts slope by 𝑏3

Intercept depends 

on 𝒍𝒂𝒕
Slope also depends 

on 𝒍𝒂𝒕

Now let‘s look at it from the perspective 

the 2nd predictor 𝑟𝑎𝑖𝑛
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Multiple predictors & interaction

log ℎ𝑒𝑖𝑔ℎ𝑡 ~Normal 𝜇, 𝜎

𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑙𝑎𝑡 + 𝑏2 ⋅ 𝑟𝑎𝑖𝑛 + 𝑏3 ⋅ 𝑙𝑎𝑡 ⋅ 𝑟𝑎𝑖𝑛

„Main effects” describe slope of a predictor, when
other predictors = 0!

Much simpler interpretation when using 

scaled variables 𝑧. 𝑙𝑎𝑡 and 𝑧. 𝑟𝑎𝑖𝑛
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Bayesian stats & linear regression

• Simple solutions for violation of model assumptions 

– Outliers → student-t distribution for residuals (heavier tails)

– Non-constant residual sdev? → distributional models 𝜎 𝑥 = 𝜎0 + 𝜎1𝑥

– Spatially / temporally autocorrelated residuals

• Simple comparison of intercepts & slopes („post-hoc analysis“)

• Regularization of effect sizes with priors

• Unbiased estimates even for small datasets

• Multivariate extensions (fit multiple responses at once)

• … 

?



Model selection
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Frequentist F-tests

F-tests for (nested) linear models 

Compare sums-of-squares of residuals

→ Connected to R2 values (amount of explained variation)

R2 always increases when adding predictors

H0: Both models perform equally

F-test checks if increase is „significant“ or just random

P<0.05 → reject H0 and accept more complex model

lm( log(height) ~ 1 )

lm( log(height) ~ 1+z.lat)
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Frequentist F-tests

> summary( lm1 )

~ z.lat*z.rain versus ~ 1

→ Always tests full model against intercept-only 

lm( log(height) ~ z.lat*z.rain )

Don‘t use p-values of main effects
when there are higher-order effects
(here interaction) → Use anova-table
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Frequentist F-tests

> summary( lm1 )

~ z.lat*z.rain versus ~ 1

→ Always tests full model against intercept-only 

lm( log(height) ~ z.lat*z.rain )

> anova( lm1 )

1: ~ z.lat          versus ~ 1

2: ~ z.lat+z.rain   versus ~ z.lat

3: ~ z.lat*z.rain   versus ~ z.lat+z.rain

→ Incremently tests more complex models

1:
2:
3:
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Frequentist AIC

„Akaike information criterion“ more flexible than F-tests

AIC = −2 ⋅ log 𝐿 + 2 ⋅ 𝑘

• Computed from likelihood 𝐿 (remember: maximum likelihood)

Model with higher likelihood-value fits the data better

• Adds a penalty term for model complexity 𝑘 (number of parameters)

→ Model with lower AIC is better

„Principle of parsimony“

Underfitted

AIC=67.5   R2=0.03 

Just right

AIC=37.1   R2=0.88 

Overfitted

AIC=43.9   R2=0.91 
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Bayesian LOO

“Leave-one-out cross-validation” 

elpd = expected log predictive density

• Computed from likelihood & posterior

• Includes parameter uncertainty & penalizes model complexity 

• Estimates for how well the model would predict for a new dataset

→ Model with higher elpd = better

LOOIC = −2 ⋅ elpd (lower values = better) just for convenience 

for people used to AIC

Underfitted

LOOIC=67.7 

Just right

LOOIC=38.4 

Overfitted

LOOIC=52.1 
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Bayesian LOO

fit2 = brm(log(height)~z.lat+z.rain)

fit3 = brm(log(height)~z.lat*z.rain)

> LOO(fit3) > LOO(fit2, fit3)

→ Use model comparison with LOO (similar to AIC) in the Bayesian framework

elpd: larger values are better

p: effective number of parameters 

looic=-2*elpd
Difference in elpd is associated with uncertainty

When elpd_diff>2*se_diff (approximately),

you can be sure the model is better.

Here, both models perform equally under uncertainty,
so we would choose the less complex one (fit2) 

Best elpd shown on top

Estimates come with standard error



1 Categorical predictor
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1 predictor with 2 levels

Example: bird species richness vs. landscape type

Observed bird species richness in different habitats

Each habitat categorized by landscape type:

• Agriculture

• Urban

• Bauxite

• Forest

Start with subset Agriculture / Urban first

Later, we also include area as a predictor
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1 predictor with 2 levels

Example: bird species richness vs. landscape type

Stochastic part: 𝑆 ~ Normal(𝜇, 𝜎)

Deterministic part: 𝜇 = 𝜇 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒

Each datapoint is a landscape patch

Categorical predictor: 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 (2 levels)

3 parameters: 𝜇𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 , 𝜇𝑈𝑟𝑏𝑎𝑛, 𝜎

Estimate and compare group-level means

Frequentist method: t-test
Does not compare distributions (overlap).
Compares their means !

• 𝝁𝑨𝒈𝒓𝒊𝒄𝒖𝒍𝒕𝒖𝒓𝒆

• 𝝁𝑼𝒓𝒃𝒂𝒏
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Dummy coding

Deterministic part: 𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑥𝑈𝑟𝑏𝑎𝑛

𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 = 𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 is reference level

𝑥𝑈𝑟𝑏𝑎𝑛 = ቊ
1 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 = 𝑈𝑟𝑏𝑎𝑛
0 otherwise

𝜇𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 = 𝑏0 + 𝑏1 ⋅ 0 = 𝑏0

𝜇𝑈𝑟𝑏𝑎𝑛 = 𝑏0 + 𝑏1 ⋅ 1 = 𝑏0 + 𝑏1

→ Linear model with „intercept“ 𝑏0 & „effect“ 𝑏1

Intercept

𝒙𝑼𝒓𝒃𝒂𝒏 = 𝟎 𝒙𝑼𝒓𝒃𝒂𝒏 = 𝟏
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Model fitting

brms uses dummy-coding (effect-coding) as default

> brm( S ~ landscape )

Q: Is there a difference in means?

→ Look at posterior distribution of effect

𝑃 𝜇𝑈𝑟𝑏𝑎𝑛 < 𝜇𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 = 1
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Model fitting

But we could enforce mean-coding

> brm( S ~ landscape-1 )

Q: Is there a difference in means?

→ Look at posterior distribution of difference

𝑃 𝜇𝑈𝑟𝑏𝑎𝑛 < 𝜇𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 = 1
dummy-coding 

and mean-coding 
are the same model !
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1 predictor with K levels

Example: bird species richness vs. landscape type

Stochastic part: 𝑆 ~ Normal(𝜇, 𝜎)

Deterministic part: 𝜇 = 𝜇 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒

Each datapoint is a landscape patch

Categorical predictor: 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 (4 levels)

K+1 parameters: 𝜇𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 , 𝜇𝐵𝑎𝑢𝑥𝑖𝑡𝑒 ,

𝜇𝐹𝑜𝑟𝑒𝑠𝑡 , 𝜇𝑈𝑟𝑏𝑎𝑛, 𝜎

Estimate and compare group-level means

Frequentist method: F-test (ANOVA)
Test model against intercept-only model
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Dummy coding with K levels

𝜇 = 𝑏0 + 𝑏1 ⋅ 𝑥𝐵𝑎𝑢𝑥𝑖𝑡𝑒 + 𝑏2 ⋅ 𝑥𝐹𝑜𝑟𝑒𝑠𝑡 𝑏3 ⋅ 𝑥𝑈𝑟𝑏𝑎𝑛

𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 = 𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 is reference level

K-1 dummy variables:

𝑥𝐵𝑎𝑢𝑥𝑖𝑡𝑒 = ቊ
1 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 = 𝐵𝑎𝑢𝑥𝑖𝑡𝑒
0 otherwise

𝑥𝐹𝑜𝑟𝑒𝑠𝑡 = ቊ
1 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 = 𝐹𝑜𝑟𝑒𝑠𝑡
0 otherwise

𝑥𝑈𝑟𝑏𝑎𝑛 = ቊ
1 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 = 𝑈𝑟𝑏𝑎𝑛
0 otherwise

𝜇𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 = 𝑏0 + 𝑏1 ⋅ 0 + 𝑏2 ⋅ 0 + 𝑏3 ⋅ 0 = 𝑏0

𝜇𝐵𝑎𝑢𝑥𝑖𝑡𝑒 = 𝑏0 + 𝑏1 ⋅ 1 + 𝑏2 ⋅ 0 + 𝑏3 ⋅ 0 = 𝑏0 + 𝑏1

etc …

b1 b2 b3

Intercept
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Model fitting with K levels

> brm( S ~ landscape )

Q: Is there a difference in means?

→ Individual effects don‘t give an overall answer

→ Compare against intercept-only model 
(similar to frequentist F-test)

> LOO(fit_landscape, fit_intercept)

Yes,  S~landscape is a 

better model than  S~1



2 Categorical predictors
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2 predictors with K & L levels

Example: S vs. landscape type & area size

Additive model S ~ landscape + area

Accounts for difference in area size

Area effect is the same for all landscape levels

𝐾 + 𝐿 − 1 parameters (+1 for sdev)

Factorial model S ~ landscape * area

Area effect changes over landscape levels

Each landscape:size combination is fitted with own mean

𝐾 ⋅ 𝐿 parameters (+1 for sdev)
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Additive model

𝜇 = 𝑏0 +

𝑏1 ⋅ 𝑥𝐵𝑎𝑢𝑥𝑖𝑡𝑒 + 𝑏2 ⋅ 𝑥𝐹𝑜𝑟𝑒𝑠𝑡 𝑏3 ⋅ 𝑥𝑈𝑟𝑏𝑎𝑛 +

𝒃𝟒 ⋅ 𝒙𝒍𝒂𝒓𝒈𝒆

𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 = 𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒, 𝑎𝑟𝑒𝑎 = 𝑠𝑚𝑎𝑙𝑙 is reference level

1 intercept

K-1 dummy variables for landscape

L-1 dummy variables for area

=K+L-1 variables

less than K*L level combinations

→ Will not fit independent group-level means
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Additive model

> brm( S ~ landscape + area )

Q: Is there an additional effect of patch size?

→ Strong effect of area 
7.82 more species in large patches (on avg.)

Parallel lines 
= additive effect
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Additive model

> brm( S ~ landscape + area )

Q: Is there an additional effect of patch size?

→ Model comparison

> LOO(fit_additive, fit_landscape)

Yes,  S~landscape+area 
is a better model than  

S~landscape

Summary table not 
helpful for predictors 

with >2 levels



50

Additive model

> brm( S ~ landscape + area )

Q: Are there differences between landscapes,
when controlling for area size?

> LOO(fit_additive, fit_area)

Yes,  S~landscape+area 
is a better model than  

S~area

Summary table not 
helpful for predictors 

with >2 levels
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Factorial model

𝜇 = 𝑏0 +

𝑏1 ⋅ 𝑥𝐵𝑎𝑢𝑥𝑖𝑡𝑒 + 𝑏2 ⋅ 𝑥𝐹𝑜𝑟𝑒𝑠𝑡 𝑏3 ⋅ 𝑥𝑈𝑟𝑏𝑎𝑛 +

𝑏4 ⋅ 𝑥𝑙𝑎𝑟𝑔𝑒 +

𝒃𝟓⋅ 𝒙𝑩𝒂𝒖𝒙𝒊𝒕𝒆,𝒍𝒂𝒓𝒈𝒆 + 𝒃𝟔 ⋅ 𝒙𝑭𝒐𝒓𝒆𝒔𝒕,𝒍𝒂𝒓𝒈𝒆 + 𝒃𝟕 ⋅ 𝒙𝑼𝒓𝒃𝒂𝒏,𝒍𝒂𝒓𝒈𝒆

𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 = 𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒, 𝑎𝑟𝑒𝑎 = 𝑠𝑚𝑎𝑙𝑙 is reference level

1 intercept

K-1 dummy variables for landscape

L-1 dummy variables for area

(K-1)*(L-1) dummy variables for landscape:area

= K*L variables in total

→ Fitting independent means to all level combinations

𝜇 = 𝜇 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒, 𝑎𝑟𝑒𝑎
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Factorial model

> brm( S ~ landscape * area )

Q: Does area effect change between landscape levels?

> LOO(fit_factorial, fit_additive)

No strong evidence for  

S~landscape*area against  

S~landscape+area

Lines not parallel
= interaction effect
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Factorial vs additive 

… 2 plots …

No strong evidence for interaction found → select additive as the best model 

Additive Factorial



Post-hoc analysis
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What is post-hoc analysis?

Model comparison (LOO)

tells you IF there is a difference between group-levels.

Post-hoc analysis (after selecting an appropriate model) 

tells you WHAT the difference is.

Analysis is model-based. 

Do not just compute empirical means from the data.
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What is post-hoc analysis?

Answer questions like:

• What is the mean species richness in small areas?

→ Average over landscapes.

• What is the mean species richness in urban landscapes?

→ Average over area sizes.

• What is the mean difference between 

urban and agricultural landscapes?

• And what are all their associated uncertainties?
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Bayesian post-hoc analysis

Make predictions & compute their average or difference etc

depending on the question.

Remember: everything is a distribution!

• For each sample 𝒌 of the posterior (𝑘 = 1…1000) 

use it‘s predictions, compute what‘s required, e.g. 𝒂𝒌 − 𝒃𝒌

• That is a sample of posterior distribution for 𝒂 − 𝒃

• Compute mean, standard deviation, quantiles, etc

→ The emmeans package can automate these steps!

→ Alternative: marginaleffects package.

Powerful but a bit more complex

Source: stockcake.com

The Bayesian 3D printer



58

Post-hoc analysis: 1 predictor

> brm( S ~ landscape )

Q: What are the predicted means 
(and their uncertainties)?
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Post-hoc analysis: 1 predictor

> brm( S ~ landscape )

Q: What is the difference between forest & urban?
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Post-hoc analysis: multiple predictors

> brm( S ~ landscape + area )

Q: What are group-level means?
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Post-hoc analysis: multiple predictors

> brm( S ~ landscape + area )

Q: What is the mean species richness in small areas?
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Post-hoc analysis: multiple predictors

> brm( S ~ landscape + area )

Q: What is the mean species richness in urban landscapes?
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Post-hoc analysis: multiple predictors

> brm( S ~ landscape + area )

Q: What is the mean difference between 
urban and forest landscapes?



Categorical & continuous predictors
(ANCOVA)

64



65

Categorical & continuous predictor

Example: bird species richness

A lot of unexplained variation in S ~ landscape 

Last section: added predictor 𝑎𝑟𝑒𝑎 (levels: small, large)

S ~ landscape + area

If we have better resolved data for area (in km²)

→ Use continuous predictor 𝒍𝒐𝒈. 𝒂𝒓𝒆𝒂

Q: Is species richness 𝑆 different over 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 types, 

while controlling for 𝑙𝑜𝑔. 𝑎𝑟𝑒𝑎?

Q: How strong is the average species-area relationship,

while controlling (acknowledging) different 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒𝑠?
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Categorical & continuous predictor

Example: S vs. landscape type & log.area

Fit a regression line to each landscape level

Additive model S ~ landscape + log.area

Slope (log.area) independent of landscape 
→ identical slope

Individual intercepts for each landscape level

Factorial model S ~ landscape * log.area

Slope (log.area) depends on landscape 

Individual intercepts & slopes for each landscape level
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Additive model

S ~ landscape + log.area

𝜇 = 𝛼 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 + 𝛽 ⋅ 𝑙𝑜𝑔. 𝑎𝑟𝑒𝑎

4 intercepts: 𝛼𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 , 𝛼𝐵𝑎𝑢𝑥𝑖𝑡𝑒 , 𝛼𝐹𝑜𝑟𝑒𝑠𝑡 , 𝛼𝑈𝑟𝑏𝑎𝑛

1 slope: 𝛽

1 sdev: 𝜎

Dummy-coding of intercepts:

𝜇 = 𝑎0 + 𝑎1 ⋅ 𝑥𝐵𝑎𝑢𝑥𝑖𝑡𝑒 + 𝑎2 ⋅ 𝑥𝐹𝑜𝑟𝑒𝑠𝑡 + 𝑎3 ⋅ 𝑥𝑈𝑟𝑏𝑎𝑛 +
𝛽 ⋅ 𝑙𝑜𝑔. 𝑎𝑟𝑒𝑎
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Additive model

> brm(S ~ landscape + log.area)

Q: Is there a difference between landscape types,
while accounting for area size?

LOO(fit_additive, fit_logarea)

Yes,  

S~landscape+logarea 
is a better model than  

S~logarea
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Additive model

> brm(S ~ landscape + log.area)

Q: Is there a difference between landscape types,
while accounting for area size?

LOO(fit_additive, fit_logarea)

Yes,  

S~landscape+logarea 
is a better model than  

S~logarea

Parallel lines 
= additive effect
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Additive model

> brm(S ~ landscape + log.area)

Q: Is there a positive relation between 𝑆 and 𝑙𝑜𝑔. 𝑎𝑟𝑒𝑎,

while acknowledging different 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒𝑠?

Yes, posterior distribution of slope positive

Alternatively, you could also do a model comparison (LOO)
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Additive model

Post-hoc analysis

> brm(S ~ landscape + log.area)

Q: What are mean intercepts and 
pairwise differences between landscape types?

„Intercepts“ at mean log.area
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Interaction model

S ~ landscape * log.area

𝜇 = 𝛼 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 + 𝛽 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 ⋅ 𝑙𝑜𝑔. 𝑎𝑟𝑒𝑎

4 intercepts: 𝛼𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 , 𝛼𝐵𝑎𝑢𝑥𝑖𝑡𝑒 , 𝛼𝐹𝑜𝑟𝑒𝑠𝑡 , 𝛼𝑈𝑟𝑏𝑎𝑛

4 slopes: 𝛽𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 , 𝛽𝐵𝑎𝑢𝑥𝑖𝑡𝑒 , 𝛽𝐹𝑜𝑟𝑒𝑠𝑡, 𝛽𝑈𝑟𝑏𝑎𝑛

1 sdev: 𝜎

Dummy-coding of intercepts & slopes:

𝜇 = 𝑎0 + 𝑎1 ⋅ 𝑥𝐵𝑎𝑢𝑥𝑖𝑡𝑒 + 𝑎2 ⋅ 𝑥𝐹𝑜𝑟𝑒𝑠𝑡 + 𝑎3 ⋅ 𝑥𝑈𝑟𝑏𝑎𝑛 +
(𝑏0 + 𝑏1 ⋅ 𝑥𝐵𝑎𝑢𝑥𝑖𝑡𝑒 + 𝑏2 ⋅ 𝑥𝐹𝑜𝑟𝑒𝑠𝑡 + 𝑏3 ⋅ 𝑥𝑈𝑟𝑏𝑎𝑛) ⋅ 𝑙𝑜𝑔. 𝑎𝑟𝑒𝑎
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Interaction model

> brm(S ~ landscape * log.area)

Q: Is the species-area relationship different
between landscape types?

LOO(fit_factorial, fit_additive)

No strong evidence for 

S~landscape*logarea 
against

S~landscape+logarea

Summary table not 
helpful for predictors 

with >2 levels
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Interaction model

> brm(S ~ landscape * log.area)

Q: Is the species-area relationship different
between landscape types?

LOO(fit_factorial, fit_additive)

No strong evidence for 

S~landscape*logarea 
against

S~landscape+logarea

Lines not parallel
= interaction effect

Summary table not 
helpful for predictors 

with >2 levels
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Interaction model

Post-hoc analysis 
(If there was support for this model)

> brm(S ~ landscape * log.area)

Q: What are the predicted slopes?



Summary
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Summary

• Regression, ANOVA, ANCOVA are just linear models

• Categorical variables can often be expressed by „dummy-coding“ or by „effects-coding“,

brms uses dummy-coding as default

• In Bayesian stats, linearity is not that important

• But always check your model assumptions (e.g. PPC, check_model)

• Research question should guide you which model to fit and which „tests“ to perform

• „Test“ just means a statement about a research question, 

quantified through posterior distribution of effect sizes, model comparisons, or post-hoc analysis

• brms flexible and „all-in-one“ package
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