Introduction to Bayesian Statistics

Part 3 Prior & Posterior Distributions

Benjamin Rosenbaum

iDiv 2025

This lecture

Short summary of last lecture

Some useful distributions

The prior distribution

The posterior distribution

Posterior predictions and model evaluation

by gaining new information (data & likelihood)

Posterior distribution used for quantitative & direct statements on research questions

Don't have access to posterior distribution Approximate by MCMC sampling

- 1) Research question (hypotheses)
- 2) Data collection
- 3) Statistical model
- 4) Prior distribution choice
- 5) Model fitting (MCMC)
- 6) Evaluate model output
- 7) Quantitative statements on hypotheses

Revise model

designed by 🗳 freepik.com

- **Example:** number of individuals from a population of *N* = 10 that survive the winter
- y discrete and bounded variable with outcomes 0, 1, 2, ..., 10
- Average survival probability $\theta = 0.6 \ (60\%)$
- Binomial distribution: $y \sim \text{Binomial}(N, \theta)$

random "distributed as" variable

parameters: size Nprobability θ

Prior distribution

Chosen by you

Density known over full parameter range

 $p(\theta) = \text{dbeta}(\theta \mid 2, 2)$

Likelihood function

Defined by **your** data and **your** statistical model (deterministic & stochastic part)

Can be computed for every single parameter value But values not known over full parameter range

 $L(\theta) = \prod_{i=1}^{n} p(y_i | \theta)$

 $= \prod_{i=1}^{n} dBinom(survived_i, total_i | \theta)$

Distribution zoo app

https://ben18785.shinyapps.io/distribution-zoo/

Ben Lambert and Fergus Cooper

Last month: used by 203 people over 408 sessions in 33 countries Since created: used by 19498 people over 36776 sessions in 144 countries

Probability playground app

https://www.acsu.buffalo.edu/~adamcunn/probability/probability.html

The gamma distribution is a "waiting time" distribution. Suppose events occur independently and randomly with an average time between events of β . The waiting time until α events have occurred is a gamma(α , β) random variable.

The parameter α is known as the shape parameter, and the parameter β is called the scale parameter. Increasing α leads to a more "peaked" distribution, while increasing β increases the "spread" of the distribution.

The function $\Gamma(s)$ in the denominator of the pdf and cdf denotes the <u>gamma</u> <u>function</u>, while the function $\gamma(s, x)$ in the cdf denotes the <u>lower incomplete</u> gamma function.

Parameter	Range	Description	
۵	a > 0	Shape parameter	
β	β > 0	Scale parameter	
Probability Density Func	tion	Support	
$f(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha}$	$x - 1 e^{-x/\beta}$	$0 \le x < \infty$	

Mean	Variance		
αβ	$\alpha\beta^2$		
Example		۵	β

A radioactive substance emits two alpha particles every second on average. Let *X* be the waiting time for three particles to be 3.000 0.5000 emitted.

Cars arrive at an intersection at an average rate of one every two minutes. Let X be the waiting time until five cars have arrived. 5.000 2.000 $\,$

Note that the mean $\alpha\beta$ is directly proportional to both α and β . This is what we would intuitively expect - the mean time spent waiting for α events to occur increases in proportion to both the number of events α and the average time β between events.

The shape of the pdf depends on the parameter a. For values of $a \le 1$, the pdf is strictly decreasing. For values of a > 1, the pdf is unimodal.

Prior distributions

Prior information

- Priors represent belief about model parameters (for example effect size of an x-y association)
- Traditional viewpoint: before we see the data y
 Data information is already contained in the likelihood!
- Use information from
 - General expectation / reasonable range
 - Previous experiments
 - Related studies in the literature
- *Modern* viewpoint:
 - Priors used for regularization
 - Prior predictive checks:

Are predictions from the prior in the same range / magnitude as observed data?

• Priors are problem-specific

Types of priors

Flat / uninformative prior

- You know absolutely nothing about the parameter
- This is rarely the case

Vague / weakly informative prior

- You have a vague idea
- For example about the order of magnitude, or sign

Informative prior

• You have some idea about the parameter

???

 \rightarrow There is no formal definition of these terms!

Prior affects the posterior

- Example: survival rate $\theta \in [0,1]$
- 1 Observation: 8/10 survived
- Binomial likelihood function
- Priors all beta distributions
 - with mean = 0.5
- but different standard deviations

(concentration around mean)

Prior affects the posterior

- For flat priors, posterior is proportial to likelihood
- For any other prior, posterior is a compromise between prior and likelihood
- For weakly informative priors, even little data dominates the posterior
- More informative priors (lower sdev) draw the posterior mean further away from the maximum likelihood estimate (MLE) towards the prior mean

Likelihood affects the posterior

- Example: survival rate $\theta \in [0,1]$
- "informative prior" from last slide
- Different numbers of obs. \boldsymbol{n}
- Width of likelihood function

decreases with \boldsymbol{n}

(higher certainty)

Likelihood affects the posterior

- For small datasets (little experimental evidence), the prior can dominate the posterior
- In large datasets, likelihood can dominate the posterior
- Number of observations decreases the width of the likelihood and therefore also posterior uncertainty (stronger experimental evidence)
- Number of observations draws posterior mean towards maximum likelihood estimate (MLE)

Are priors subjective?

- Not including ANY information at all is also a choice
- Usually, you have SOME idea about a relationship
- If you have previous results (other studies / experiments), this information should go into your analysis
- Whole research process is never purely objective anyway
- In complex models, priors might even be necessary!
- If you're worried, perform a sensitivity analysis: re-analyze the data with different prior specifications

Prior predictive checks

- Test if priors make sense
- Generate predictions with samples from prior distribution
- Compare them to the range of observed data
- Helpful when using data transformations
 (GLMs use nonlinear link-functions, like log or logit)
- *Traditional* viewpoint (old school):
 Priors should be chosen before even looking at the data
- Modern viewpoint: Prior predictive simulations are useful!
 E.g. McElreath: Statistical Rethinking (2020, 2nd ed.)

Source: Wesner & Pomeranz (2021) Ecosphere

brms default priors

- brms automatically chooses priors for intercepts and standard deviations
- · Based on the observed data
- Overriding intercept default prior must be handled carefully:

brms internally uses mean-centered predictors, which changes intercept

- \rightarrow My advice: leave them unless you want to include specific information on these parameters
- brms default priors for effect sizes / regression **slopes** are flat priors!
- \rightarrow Choose your own priors for them!

<pre>> prior_summary(fit2)</pre>								
prior	class	coef	group	resp	dpar	nlpar	- lb ub	source
(flat)	b							default
(flat)	b	age						(vectorized)
student_t(3, 110, 11.9)	Intercept							default
student_t(3, 0, 11.9)	sigma						Θ	default

Posterior distribution

MCMC output is a matrix / dataframe !

The posterior sample is multivariate

Each column contains all samples of 1 parameter

The posterior sample is multivariate

Each **row** contains 1 sample of all parameters

The posterior sample is multivariate

Everything is a distribution !

Posterior predictions

Example:

Example: linear relationship between age x and body mass y of sea turtles

Deterministic part: $\mu(x) = a + b \cdot x$

Stochastic part:

 $y \sim \text{Normal}(\mu, \sigma)$

Parameters:

- *a* intercept*b* slope
- $\sigma\,$ standard deviation

Model output

> fit1 = brm(weight ~ age, data=data)
> summary(fit1)

Family: gaussian

Links: mu = identity; sigma = identity

Formula: weight ~ age

Data: data (Number of observations: 8)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup draws = 4000

Regression Coefficients:

	Estimate	Est.Error	l-95%	CI	u-95%	CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	19.99	16.24	-13.	79	53.	.23	1.00	2848	1916
age	8.53	1.50	5.	46	11.	. 59	1.00	2817	1838

Further Distributional Parameters:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sigma	4.01	1.43	2.19	7.73	1.00	1606	1766

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

How to predict ?

What is the predicted weight at age x = 10.5 ?

Deterministic part: $\mu(x) = a + b \cdot x$

We have mean values for

intercept a = 19.99 and slope b = 8.53

However, in Bayesian statistics, we **don't** use mean parameter values to make prediction.

We use the **whole posterior distribution** to quantify prediction uncertainty correctly !

The fitted distribution

Each sample from the posterior (a_i, b_i) generates 1 sample for, $\mu_i(\text{age} = 10.5) = a_i + b_i \cdot 10.5$

> posterior_epred(fit1, newdata=data.frame(age=10.5))

draw	b_Intercept	b_age	sigma
1	7.473	9.738	4.128
2	30.477	7.614	3.456
3	22.153	8.273	3.474
4	34.008	7.310	4.200
5	39.144	6.667	4.456
6	12.472	9.328	3.671
7	7.005	9.674	4.045
8	-3.196	10.633	4.117
9	23.362	8.309	3.519
10	23.745	8.247	3.336
11	27.194	7.948	4.249
12	18.373	8.566	3.351
13	20.358	8.522	3.447
14	10.307	9.322	3.007
15	24.486	8.224	3.408

draw	<pre>b_Intercept</pre>	b_age	sigma
1	7.473	9.738	4.128
2	30.477	7.614	3.456
3	22.153	8.273	3.474
4	34.008	7.310	4.200
5	39.144	6.667	4.456
6	12.472	9.328	3.671
7	7.005	9.674	4.045
8	-3.196	10.633	4.117
9	23.362	8.309	3.519
10	23.745	8.247	3.336
11	27.194	7.948	4.249
12	18.373	8.566	3.351
13	20.358	8.522	3.447
14	10.307	9.322	3.007
15	24.486	8.224	3.408

draw	<pre>b_Intercept</pre>	b_age	sigma
1	7.473	9.738	4.128
2	30.477	7.614	3.456
3	22.153	8.273	3.474
4	34.008	7.310	4.200
5	39.144	6.667	4.456
6	12.472	9.328	3.671
7	7.005	9.674	4.045
8	-3.196	10.633	4.117
9	23.362	8.309	3.519
10	23.745	8.247	3.336
11	27.194	7.948	4.249
12	18.373	8.566	3.351
13	20.358	8.522	3.447
14	10.307	9.322	3.007
15	24.486	8.224	3.408

draw	b_Intercept	b_age	sigma
1	7.473	9.738	4.128
2	30.477	7.614	3.456
3	22.153	8.273	3.474
4	34.008	7.310	4.200
5	39.144	6.667	4.456
6	12.472	9.328	3.671
7	7.005	9.674	4.045
8	-3.196	10.633	4.117
9	23.362	8.309	3.519
10	23.745	8.247	3.336
11	27.194	7.948	4.249
12	18.373	8.566	3.351
13	20.358	8.522	3.447
14	10.307	9.322	3.007
15	24.486	8.224	3.408

Credible intervals

Distribution of fitted values / regression lines with **deterministic model part only** $\mu_i(x) = a_i + b_i \cdot x$ (*i* = 1, ..., 1000)

Mean fitted value

$$\overline{\mu}(x) = \operatorname{mean}(\mu_1(x), \dots, \mu_{1000}(x))$$

95% intervals are called **credible intervals**. They quantify uncertainty of the regression line.

There is nothing magical about 95%, can also choose other intervals, e.g. 90%

Credible intervals

Distribution of fitted values / regression lines with **deterministic model part only** $\mu_i(x) = a_i + b_i \cdot x$ (*i* = 1, ..., 1000)

Mean fitted value

$$\overline{\mu}(x) = \operatorname{mean}(\mu_1(x), \dots, \mu_{1000}(x))$$

95% intervals are called **credible intervals**. They quantify uncertainty of the regression line.

There is nothing magical about 95%, can also choose other intervals, e.g. 90%

The predictive distribution

<pre>b_Intercept</pre>	b_age	<pre>fitted(age=10.5)</pre>
7.473	9.738	109.720
30.477	7.614	110.425
22.153	8.273	109.022
34.008	7.310	110.763
39.144	6.667	Deterministic part 109.147
12.472	9.328	$\mu = a + b \cdot x \qquad 110.415$
7.005	9.674	108.579
-3.196	10.633	
23.362	8.309	
23.745	8.247	
		100 110 120
		$\mu(age = 10.5)$

> posterior_epred(fit1, newdata=data.frame(age=10.5))

40

The predictive distribution

> posterior_epred(fit1, newdata=data.frame(age=10.5))

> posterior_predict(fit1, newdata=data.frame(age=10.5))

Prediction intervals

Predictions add random residual error to fitted values

Distribution of predicted values with **deterministic and stochastic model part** $\hat{y}_i(x) = \mu_i(x) + \varepsilon_i$ (*i* = 1, ..., 1000) $\varepsilon_i \sim \text{Normal}(0, \sigma_i)$

Same as: $\hat{y}_i(x) \sim \text{Normal}(\mu_i(x), \sigma_i)$

95% intervals are called **prediction intervals**.They quantify uncertainty of newly predicted data.(Should contain around 95% of observed data.)

Fitted vs. predictive

Fitted

Mean regression line / curve under parameter uncertainty

"Credible intervals"

Uses deterministic model part only

Predicted

Predictive data distribution under parameter uncertainty and model residuals

"Prediction intervals"

Uses deterministic and stochastic model parts

Fitted vs. predictive

Fitted

> fitted(fit1)

	Estimate	Est.Error	Q2.5	Q97.5
[1,]	105.25324	1.813620	101.59634	108.8769
[2,]	122.30603	2.343272	117.55827	127.0220
[3,]	113.77964	1.458628	110.92357	116.6928
[4,]	113.77964	1.458628	110.92357	116.6928
[5,]	96.72685	2.995963	90.55468	102.8774
[6,]	113.77964	1.458628	110.92357	116.6928
[7,]	105.25324	1.813620	101.59634	108.8769
[8,]	122.30603	2.343272	117.55827	127.0220

Mean regression line / curve under parameter uncertainty

"Credible intervals"

Uses deterministic model part only

Predicted

> predict(fit1)

Estimate	Est.Error	Q2.5	Q97.5
[1,] 105.22283	4.549012	95.94294	114.3628
[2,] 122.18553	4.887509	112.25245	131.7162
[3,] 113.76152	4.490723	104.56416	122.8968
[4,] 113.70727	4.512039	104.60886	122.9418
[5,] 96.82354	5.324598	86.61397	107.5571
[6,] 113.75514	4.443002	104.59945	122.6224
[7,] 105.24951	4.562843	95.97297	114.4820
[8,] 122.42399	4.799248	112.77401	132.2151

Predictive data distribution under parameter uncertainty and model residuals

"Prediction intervals"

Uses deterministic and stochastic model parts

Posterior predictive checks

Linear regression assumptions

1. Independent observations.

Systematic differences in y are because of x !

- 2. Trend of *y* follows (linear) prediction model $\mu(x) = a + b \cdot x$
- 3. Residuals follow normal distribution $\varepsilon \sim \text{Normal}(0, \sigma)$
- 4. Constant variance (standard deviation) across whole range of x

Model checking

Visualization is easy when you have just one predictor!

Need alternative visual tools when dealing with multiple predictors.

Response / prediction is just 1 variable

- \rightarrow Compare and plot against each other:
- observations
- (mean) predictions
- residuals (observed predicted)

> plot(conditional_effects(fit1), points=TRUE)

Model checking (from brms package)

> pp_check(fit1, type=,,scatter_avg")

> pp_check(fit1, ndraws=50)

Model checking (from performance package)

Linearity Reference line should be flat and horizontal

> check_model(fit1, check=,,linearity")

Homogeneity of Variance Reference line should be flat and horizontal

> check_model(fit1, check=,,homogeneity")

Model checking (from performance package)

> check_model(fit1, check=,,qq")

Normality of Residuals Distribution should be close to the normal curve

> check_model(fit1, check=,,normality")

Pitfalls of prediction: Multivariate posterior

If you posterior (parameters a, b) was shaped like Croatia, (nonlinear correlation), then the mean (\bar{a}, \bar{b}) in 2d-space would not be part of the posterior sample

Parameter combination (\bar{a}, \bar{b}) is **highly unlikely**

Prediction $\mu(\bar{a}, \bar{b})$ is not the mean prediction, but rather meaningless!

 \rightarrow Always use full posterior for making predictions!

Due to its shape, the centre of Croatia is actually located in Bosnia and Herzegovina

Pitfalls of prediction: Jensen's inequality

→ Always use full posterior for making predictions!

Summary

- Priors \rightarrow you choose !
- Likelihood \rightarrow given by data & statistical model
- MCMC samples from posterior → check convergence !
- Informative priors can decrease uncertainty in posterior
- More datapoints can decrease uncertainty in posterior
- Use posterior predictions to check model assumptions and model fit
- In Bayesian statistics, everything is a distribution
- \rightarrow Use full posterior (samples) for everything

Further reading

Banner, K. M., Irvine, K. M., & Rodhouse, T. J. (2020). The use of Bayesian priors in Ecology: The good, the bad and the not great. *Methods in Ecology and Evolution*, 11(8), 882–889. <u>https://doi.org/10.1111/2041-210X.13407</u>

Bürkner, P. (2024). The brms Book [in progress]. <u>https://paulbuerkner.com/software/brms-book/</u>

Conn, P. B., Johnson, D. S., Williams, P. J., Melin, S. R., & Hooten, M. B. (2018). A guide to Bayesian model checking for ecologists. *Ecological Monographs*, 88(4), 526–542. <u>https://doi.org/10.1002/ecm.1314</u>

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian workflow. *Journal of the Royal Statistical Society. Series A, (Statistics in Society)*, 182(2), 389–402. <u>https://doi.org/10.1111/rssa.12378</u>

Lemoine, N. P. (2019). Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. *Oikos*, 128(7), 912–928. <u>https://doi.org/10.1111/oik.05985</u>

McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and STAN (2nd ed.). *Chapman and Hall/CRC*. <u>https://doi.org/10.1201/9780429029608</u>

van de Schoot, R., Depaoli, S., King, R., et al. (2021). Bayesian statistics and modelling. *Nature Reviews. Methods Primers*, 1(1), 1–26. <u>https://doi.org/10.1038/s43586-020-00001-2</u>

Wesner, J. S., & Pomeranz, J. P. F. (2021). Choosing priors in Bayesian ecological models by simulating from the prior predictive distribution. *Ecosphere*, 12(9), e03739. <u>https://doi.org/10.1002/ecs2.3739</u>

https://github.com/stan-dev/stan/wiki/prior-choice-recommendations