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This lecture

Short summary of last lecture

Some useful distributions

The prior distribution

The posterior distribution

Posterior predictions and model evaluation
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From last lecture
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From last lecture

Bayes‘ rule

𝑝 𝜽 𝑦 =
𝑝 𝑦 𝜽 ⋅ 𝑝(𝜽)

𝑝(𝑦)

Update beliefs (prior) 
by gaining new information (data & likelihood)

Posterior distribution used for
quantitative & direct statements on research questions

Don‘t have access to posterior distribution
Approximate by MCMC sampling
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From last lecture

1) Research question (hypotheses)

2) Data collection

3) Statistical model

4) Prior distribution choice

5) Model fitting (MCMC)

6) Evaluate model output

7) Quantitative statements on hypotheses

Revise 
model
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From last lecture

• Example: number of individuals from a population

of 𝑁 = 10 that survive the winter

• 𝑦 discrete and bounded variable with outcomes 0, 1, 2, …, 10 

• Average survival probability 𝜃 = 0.6 (60%)

• Binomial distribution:     𝑦 ~ Binomial(𝑁, 𝜃)

random
variable

„distributed as“ parameters:

size 𝑁
probability 𝜃
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From last lecture

Prior distribution

Chosen by you

Density known over full parameter range

𝑝 𝜃 = dbeta 𝜃 | 2,2
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From last lecture

Likelihood function

Defined by your data and your statistical model

(deterministic & stochastic part)

Can be computed for every single parameter value
But values not known over full parameter range

𝐿 𝜃 = ς𝑖=1
𝑛 𝑝 𝑦𝑖|𝜃

= ς𝑖=1
𝑛 dBinom survived𝑖 , total𝑖 | 𝜃
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From last lecture

Posterior distribution

Software output:

approximation by MCMC sampling

𝑝 𝜃|𝑦 ∼ 𝑝 𝜃 ⋅ 𝐿(𝜃)

Represented by samples 𝜃1, 𝜃2, 𝜃3, … , 𝜃1000 only!

Posterior density values 𝑝 𝜃1|𝑦 , 𝑝 𝜃2|𝑦 ,… , 𝑝 𝜃1000|𝑦

not required, don‘t need to be saved

Counting instead of integrating for hypotheses testing!

Super easy once 
you have a 

posterior sample
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Distribution zoo app

https://ben18785.shinyapps.io/distribution-zoo/

https://ben18785.shinyapps.io/distribution-zoo/
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Probability playground app

https://www.acsu.buffalo.edu/~adamcunn/probability/probability.html

https://www.acsu.buffalo.edu/~adamcunn/probability/probability.html


Prior distributions
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Prior information

• Priors represent belief about model parameters

(for example effect size of an x-y association)

• Traditional viewpoint: before we see the data y

Data information is already contained in the likelihood!

• Use information from 

– General expectation / reasonable range

– Previous experiments

– Related studies in the literature

• Modern viewpoint: 

– Priors used for regularization

– Prior predictive checks: 

Are predictions from the prior in the same range / magnitude as observed data?

• Priors are problem-specific 

? ? ? 
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Types of priors

Flat / uninformative prior

• You know absolutely nothing about the parameter

• This is rarely the case

Vague / weakly informative prior

• You have a vague idea 

• For example about the order of magnitude, or sign

Informative prior

• You have some idea about the parameter

→ There is no formal definition of these terms!

? ? ? 
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Prior affects the posterior

• Example: survival rate 𝜃 ∈ [0,1]

• 1 Observation: 8/10 survived

• Binomial likelihood function

• Priors all beta distributions

with mean = 0.5

• but different standard deviations

(concentration around mean)

Flat prior Weakly 
informative

Informative Highly 
informative
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Prior affects the posterior

• For flat priors, posterior is proportial to likelihood

• For any other prior, posterior is a compromise 

between prior and likelihood

• For weakly informative priors, even little data

dominates the posterior

• More informative priors (lower sdev)

draw the posterior mean further away from 

the maximum likelihood estimate (MLE)

towards the prior mean

Flat prior Weakly 
informative

Informative Highly 
informative
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Likelihood affects the posterior

n=1 n=2

n=5 n=10

• Example: survival rate 𝜃 ∈ [0,1]

• „informative prior“ from last slide

• Different numbers of obs. 𝑛

• Width of likelihood function

decreases with 𝑛

(higher certainty)
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Likelihood affects the posterior

• For small datasets (little experimental evidence), 

the prior can dominate the posterior

• In large datasets, likelihood can dominate the posterior

• Number of observations decreases the width of

the likelihood and therefore also posterior uncertainty

(stronger experimental evidence)

• Number of observations draws posterior mean

towards maximum likelihood estimate (MLE)

n=1 n=2

n=5 n=10



19

Are priors subjective?

• Not including ANY information at all is also a choice

• Usually, you have SOME idea about a relationship

• If you have previous results (other studies / experiments),
this information should go into your analysis

• Whole research process is never purely objective anyway

• In complex models, priors might even be necessary!

• If you‘re worried, perform a sensitivity analysis:
re-analyze the data with different prior specifications

?
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Prior predictive checks

• Test if priors make sense 

• Generate predictions with samples from prior distribution

• Compare them to the range of observed data

• Helpful when using data transformations

(GLMs use nonlinear link-functions, like log or logit )

• Traditional viewpoint (old school):

Priors should be chosen before even looking at the data

• Modern viewpoint: Prior predictive simulations are useful!

E.g. McElreath: Statistical Rethinking (2020, 2nd ed.)

> prior_sim = brm(size~age, data=my_data, prior=my_prior, 

sample_prior="only")
> pp_check(prior_sim)

Source: Wesner & Pomeranz (2021) Ecosphere

Weaker priors

Stronger priors
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brms default priors

• brms automatically chooses priors for intercepts and standard deviations

• Based on the observed data

• Overriding intercept default prior must be handled carefully:

brms internally uses mean-centered predictors, which changes intercept

→ My advice: leave them unless you want to include specific information on these parameters

• brms default priors for effect sizes / regression slopes are flat priors!

→ Choose your own priors for them!



Posterior distribution
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The posterior sample is multivariate

MCMC output is a matrix / dataframe !
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The posterior sample is multivariate

Each column contains all samples of 1 parameter
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The posterior sample is multivariate

Each row contains 1 sample of all parameters 
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The posterior sample is multivariate

A random row is part of the posterior sample
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The posterior sample is multivariate

Random entries of each column (mixed) 
are not part of the posterior sample
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Everything is a distribution !

All distributions available in form of samples 
through computations from the 
samples of the posterior distribution

Parameters

𝑎, 𝑏, 𝜎

Statistical model

𝜇 = 𝑎 + 𝑏𝑥
𝑦~Normal 𝜇, 𝜎

Predictions

ො𝑦 𝑥

Model fit
R2 / MSE / …

Hypotheses

𝑏 > 0 ?

Post-hoc analysis

𝑏1 − 𝑏2

Model comparison
WAIC / LOOIC



Posterior predictions
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Example:

Example: linear relationship between

age 𝑥 and body mass 𝑦 of sea turtles

Deterministic part: 𝜇 𝑥 = 𝑎 + 𝑏 ⋅ 𝑥

Stochastic part: 𝑦 ~ Normal(𝜇, 𝜎)

Parameters: 𝑎 intercept 

𝑏 slope 

𝜎 standard deviation
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Model output

> fit1 = brm(weight ~ age, data=data)

> summary(fit1)

mean and sdev of parameters‘ 
posterior distribution
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How to predict ?

What is the predicted weight at age 𝑥 = 10.5 ?

Deterministic part: 𝜇 𝑥 = 𝑎 + 𝑏 ⋅ 𝑥

We have mean values for 

intercept  𝑎 = 19.99 and slope  𝑏 = 8.53

However, in Bayesian statistics, we don’t use
mean parameter values to make prediction.

We use the whole posterior distribution to
quantify prediction uncertainty correctly ! 

?
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The fitted distribution

Each sample from the posterior 𝑎𝑖 , 𝑏𝑖 generates 1 sample for, 𝜇𝑖 age = 10.5 = 𝑎𝑖 + 𝑏𝑖 ⋅ 10.5

> posterior_epred(fit1, newdata=data.frame(age=10.5))

Deterministic part

𝜇 = 𝑎 + 𝑏 ⋅ 𝑥
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Each posterior sample generates a regression line



35

Each posterior sample generates a regression line
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Each posterior sample generates a regression line
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Each posterior sample generates a regression line



38

Credible intervals

Distribution of fitted values / regression lines

with deterministic model part only

𝜇𝑖 𝑥 = 𝑎𝑖 + 𝑏𝑖 ⋅ 𝑥 𝑖 = 1,… , 1000

Mean fitted value

ഥ𝜇 𝑥 = mean 𝜇1 𝑥 ,… , 𝜇1000 𝑥

95% intervals are called credible intervals.

They quantify uncertainty of the regression line.

There is nothing magical about 95%, 

can also choose other intervals, e.g. 90% > plot(conditional_effects(fit1, spaghetti=TRUE, ndraws=200))
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Credible intervals

Distribution of fitted values / regression lines

with deterministic model part only

𝜇𝑖 𝑥 = 𝑎𝑖 + 𝑏𝑖 ⋅ 𝑥 𝑖 = 1,… , 1000

Mean fitted value

ഥ𝜇 𝑥 = mean 𝜇1 𝑥 ,… , 𝜇1000 𝑥

95% intervals are called credible intervals.

They quantify uncertainty of the regression line.

There is nothing magical about 95%, 

can also choose other intervals, e.g. 90% > plot(conditional_effects(fit1), points=TRUE)
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The predictive distribution

Deterministic part

𝜇 = 𝑎 + 𝑏 ⋅ 𝑥

> posterior_epred(fit1, newdata=data.frame(age=10.5))
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The predictive distribution

Deterministic part

𝜇 = 𝑎 + 𝑏 ⋅ 𝑥
Stochastic part

𝑦~Normal 𝜇, 𝜎

> posterior_epred(fit1, newdata=data.frame(age=10.5))           > posterior_predict(fit1, newdata=data.frame(age=10.5))   
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Prediction intervals

Predictions add random residual error to fitted values

Distribution of predicted values

with deterministic and stochastic model part 

ෝ𝑦𝑖 𝑥 = 𝜇𝑖 𝑥 + 𝜀𝑖 𝑖 = 1,… , 1000

𝜀𝑖 ∼ Normal(0, 𝜎𝑖)

Same as: ෝ𝑦𝑖 𝑥 ∼ Normal 𝜇𝑖 𝑥 , 𝜎𝑖

95% intervals are called prediction intervals.

They quantify uncertainty of newly predicted data.

(Should contain around 95% of observed data.)
> plot(conditional_effects(fit1, method=„posterior_predict“), 

points=TRUE)
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Fitted vs. predictive 

Mean regression line / curve under 
parameter uncertainty

„Credible intervals“

Uses deterministic model part only

Predictive data distribution under 
parameter uncertainty and model residuals

„Prediction intervals“

Uses deterministic and stochastic model parts

Fitted Predicted
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Fitted vs. predictive 

Fitted Predicted

Mean regression line / curve under 
parameter uncertainty

„Credible intervals“

Uses deterministic model part only

Predictive data distribution under 
parameter uncertainty and model residuals

„Prediction intervals“

Uses deterministic and stochastic model parts



Posterior predictive checks
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Linear regression assumptions

1. Independent observations.

Systematic differences in 𝑦 are because of 𝑥 !

2. Trend of 𝑦 follows (linear) prediction model

𝜇 𝑥 = 𝑎 + 𝑏 ⋅ 𝑥

3. Residuals follow normal distribution

𝜀 ~ Normal 0, 𝜎

4. Constant variance (standard deviation) 

across whole range of 𝑥
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Model checking

Visualization is easy when you have 
just one predictor!

Need alternative visual tools when dealing 
with multiple predictors.

Response / prediction is just 1 variable

→ Compare and plot against each other:

• observations

• (mean) predictions

• residuals (observed - predicted)

> plot(conditional_effects(fit1), points=TRUE)
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Model checking (from brms package)

Observed vs. (mean) fitted Posterior predictive check

> pp_check(fit1, type=„scatter_avg“)                         > pp_check(fit1, ndraws=50)        
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Model checking (from performance package)

> check_model(fit1, check=„linearity“)                            > check_model(fit1, check=„homogeneity“)
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Model checking (from performance package)

> check_model(fit1, check=„qq“)                                 > check_model(fit1, check=„normality“)
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Pitfalls of prediction: Multivariate posterior

If you posterior (parameters 𝑎, 𝑏) was shaped like Croatia,

(nonlinear correlation), then the mean ത𝑎, ത𝑏 in 2d-space

would not be part of the posterior sample 

Parameter combination ത𝑎, ത𝑏 is highly unlikely

Prediction 𝜇 ത𝑎, ത𝑏 is not the mean prediction, 

but rather meaningless!

→ Always use full posterior for making predictions!

x.com
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Pitfalls of prediction: Jensen‘s inequality

For linear models 𝜇 (as in linear regression 𝜇 = 𝑎 + 𝑏𝑥)

mean 𝜇 𝜃1 , … , 𝜇 𝜃1000 = 𝜇 mean 𝜃1, … , 𝜃1000

For nonlinear functions 𝜇

mean 𝜇 𝜃1 , … , 𝜇 𝜃1000 ≠ 𝜇 mean 𝜃1, … , 𝜃1000

Relevant for nonlinear statistical models, GLMs, 
link functions, parameter or data transformations

→ Always use full posterior for making predictions!

Distribution of 
predictions

Prediction with 

point estimate ഥ𝜽

𝜃1 𝜃2ഥ𝜽

𝜇2

𝜇1

𝜇 ഥ𝜽

ഥ𝝁



Summary
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Summary

• Priors → you choose !

• Likelihood → given by data & statistical model

• MCMC samples from posterior → check convergence !

• Informative priors can decrease uncertainty in posterior

• More datapoints can decrease uncertainty in posterior

• Use posterior predictions to check model assumptions and model fit

• In Bayesian statistics, everything is a distribution

→ Use full posterior (samples) for everything
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