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This lecture

Frequentist statistics and Null hypothesis significance testing

Bayes‘ rule

Markov Chain Monte Carlo sampling

MCMC software

Why Bayesian statistics?
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Statistical modeling

We are data detectives, trying to solve a mystery

In ecology, these mysteries can be extra tricky:

• Observational data instead of experiments

• Noisy data

• Many sources of variation

We‘re trying to unravel a signal from the noise 

(e.g. overall trend of biodiversity loss)

We want to make quantitative statements on research questions!



Some comments on frequentist stats
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Statistical modeling

Maximum likelihood alone can‘t make probability statements about our research question!

Model Data / Nature

Probability

𝑃 𝒚 𝜃

Likelihood

𝐿 𝜽 𝑦 = 𝑃 𝑦 𝜽

Prediction

Inference
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Statistical modeling

We want to assign probabilities to model parameters!  E.g., 𝑃 𝜃 > 0

Model Data / Nature

Probability

𝑃 𝒚 𝜃

Probability

𝑃 𝜽 𝑦

Prediction

Inference
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The frequentist „trick“: Null hypothesis significance testing

1. We want to test hypothesis H1 

(e.g., association is positive: 𝜽 > 𝟎)

2. We assume that the null hypothesis H0 is true 

(e.g., association is zero: 𝜃 = 0)

3. Use a transformation 𝑇 for which data 𝑌 (residuals) 

have a well-known distribution 𝑃(𝑇) under H0

4. If 𝑇 𝑌 deviates enough from the assumed distribution, 

reject the null hypothesis

𝑃 𝑇 > 𝑇 𝑌 | 𝜃 = 0 < 0.05 → reject H0

Tests if the estimated association 𝜃∗ (MLE) 

is just due to randomess of the data

H1: slope 𝜽 > 𝟎 ??
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The frequentist „trick“: Null hypothesis significance testing

1. We want to test hypothesis H1 

(e.g., association is positive: 𝜃 > 0)

2. We assume that the null hypothesis H0 is true

(e.g., association is zero: 𝜽 = 𝟎)

3. Use a transformation 𝑇 for which data 𝑌 (residuals) 

have a well-known distribution 𝑃(𝑇) under H0

4. If 𝑇 𝑌 is improbable under assumed distribution, 

reject the null hypothesis

𝑃 𝑇 > 𝑇 𝑌 | 𝜃 = 0 < 0.05 → reject H0

Tests if the estimated association 𝜃∗ (MLE) 

is just due to randomess of the data

H0: slope 𝜽 = 𝟎
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The frequentist „trick“: Null hypothesis significance testing

1. We want to test hypothesis H1 

(e.g., association is positive: 𝜃 > 0)

2. We assume that the null hypothesis H0 is true

(e.g., association is zero: 𝜃 = 0)

3. Use a transformation 𝑻 for which data 𝒀 (residuals) 

have a well-known distribution 𝑷(𝑻) under H0

4. If 𝑇 𝑌 is improbable under assumed distribution, 

reject the null hypothesis

𝑃 𝑇 > 𝑇 𝑌 | 𝜃 = 0 < 0.05 → reject H0

Tests if the estimated association 𝜃∗ (MLE) 

is just due to randomess of the data
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The frequentist „trick“: Null hypothesis significance testing

1. We want to test hypothesis H1 

(e.g., association is positive: 𝜃 > 0)

2. We assume that the null hypothesis H0 is true

(e.g., association is zero: 𝜃 = 0)

3. Use a transformation 𝑇 for which data 𝑌 (residuals) 

have a well-known distribution 𝑃(𝑇) under H0

4. If 𝑻 𝒀 is improbable under assumed distribution, 

reject the null hypothesis

𝑷 𝑻 > 𝑻 𝒀 | 𝜽 = 𝟎 < 𝟎. 𝟎𝟓 → reject H0

Tests if the estimated association 𝜃∗ (MLE) 

is just due to randomess of the data

𝑻 𝒀
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Frequentist principles

→ Data are a random realization of an experiment. 

True (but unknown) parameter is fixed.

Some problems with NHST: 

• P-value: Probability of the data under the null hypothesis

• Can‘t confirm hypotheses, just reject the null hypothesis

• Standard errors rely on assumptions & approximations

• Confidence intervals‘ interpretation tricky

• Limited to tests with known distributions (T-test, F-test, …)
50%-confidence intervals in 20 repeated experiments: 

10 out of 20 contain the true value 𝜇

Source:Wikipedia

https://en.wikipedia.org/wiki/Confidence_interval
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Bayesian principles

To make quantitative statements about research questions, 
we need probability distribution for model parameters, 

after observing the data 𝑃 𝜃|𝑦

→ Data is fixed, parameters are random.

Some examples:

• 𝑃 𝜃 > 0 = 0.99:   

“I am 99% certain that the association is positive.”

• 90%-quantile [0.5, 4.3]: 
“There is a 90% chance the slope is between 0.5 and 4.3.”

• 2 population means 𝜇1 and 𝜇2. 
𝑃 𝜇1 − 𝜇2 quantifies distribution of population-level difference.
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Bayesian models ???

There is no such thing as a „Bayesian model“!

Maximum likelihood → Point estimates

Frequentist NHST → P-values for Null hypothesis

Bayesian stats → True probability distribution
for model parameters

“Full luxury Bayes” (Richard McElreath)

“Bayesian 3D printer” (me)

Source: stockcake.com

The Bayesian 3D printer



Bayes‘ rule
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Reverend Thomas Bayes (1701—1761)
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Bayes‘ rule 

Conditional probability: 

Prob. of event 𝐴, given that 𝐵 occured

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
=

𝑃 𝐵 𝐴 ⋅ 𝑃(𝐴)

𝑃(𝐵)

𝑃 Covid positive =
𝑃 positive|Covid ⋅ 𝑃 Covid

𝑃 positive

𝑃 positive Covid test sensitivity

𝑃 Covid prevalence in the population

𝑃 positive positive test rate

𝑨 𝑩

population
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Bayes‘ rule

Probability distribution of model parameters 𝜽

after observing the data 𝑦

𝑝 𝜽 𝑦 =
𝑝 𝑦 𝜽 ⋅ 𝑝(𝜽)

𝑝(𝑦)
Posterior 

distribution

Likelihood 

function 𝐿(𝜃)
Prior 

distribution

Normalization constant

Independent of 𝜃
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Bayes‘ rule

𝑝 𝜽 𝑦 =
𝑝 𝑦 𝜽 ⋅ 𝑝(𝜽)

𝑝(𝑦)

𝒑 𝜽 𝒚 Posterior distribution

Update prior information in light of new evidence (data)

𝒑 𝜽 Prior distribution 

Belief about model parameters before data is observed

𝒑 𝒚 𝜽 = 𝑳 𝜽 Likelihood function

Data inform the parameters, but 𝐿 is not a probability distribution for 𝜃

𝒑 𝒚 = 𝜽𝒑׬ 𝒚 𝜽 𝒑 𝜽 Normalization constant

Ensures that posterior is a true probility distribution with ׬𝜃 𝑝 𝜃 𝑦 = 1
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Example

Survival rate of a deer population 

1 datapoint: 7 out of 10 individuals survived

Deterministic part: average survival rate 𝜃

Stochastic part: 𝑦 ~ Binomial 𝑁, 𝜃
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Example

Survival rate of a deer population 

1 datapoint: 7 out of 10 individuals survived

Deterministic part: average survival rate 𝜃

Stochastic part: 𝑦 ~ Binomial 𝑁, 𝜃

Prior: 𝜃 almost 0 or almost 1 are improbable

𝜃 ~ beta 2,2 or  𝑝 𝜃 = dbeta 𝜃 | 2,2
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Example

Survival rate of a deer population 

1 datapoint: 7 out of 10 individuals survived

Deterministic part: average survival rate 𝜃

Stochastic part: 𝑦 ~ Binomial 𝑁, 𝜃

Prior: 𝜃 almost 0 or almost 1 are improbable

𝜃 ~ beta 2,2 or  𝑝 𝜃 = dbeta 𝜃 | 2,2

Likelihood: defined by statistical model & data

𝐿 𝜃 = 𝑝 𝑦 𝜃 = dBinomial 𝑦 = 7,𝑁 = 10 | 𝜃
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Example

Survival rate of a deer population 

1 datapoint: 7 out of 10 individuals survived

Deterministic part: average survival rate 𝜃

Stochastic part: 𝑦 ~ Binomial 𝑁, 𝜃

Prior: 𝜃 almost 0 or almost 1 are improbable

𝜃 ~ beta 2,2 or  𝑝 𝜃 = dbeta 𝜃 | 2,2

Likelihood: defined by statistical model & data

𝐿 𝜃 = 𝑝 𝑦 𝜃 = dBinomial 𝑦 = 7,𝑁 = 10 | 𝜃

Posterior:

𝑝 𝜃 𝑦 =
𝐿 𝜃 ⋅𝑝 𝜃

𝑐
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Example: different prior

Survival rate of a deer population 

1 datapoint: 7 out of 10 individuals survived

Deterministic part: average survival rate 𝜃

Stochastic part: 𝑦 ~ Binomial 𝑁, 𝜃

Prior: uninformative

𝜃 ~ beta 1,1 = uniform 1,1

Likelihood: defined by statistical model & data

𝐿 𝜃 = 𝑝 𝑦 𝜃 = dBinomial 𝑦 = 7,𝑁 = 10 | 𝜃

Posterior:

𝑝 𝜃 𝑦 =
𝐿 𝜃 ⋅𝑝 𝜃

𝑐
proportional to likelihood here
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Calculation of the posterior?

To compute, e.g. mean 𝜃 , sd 𝜃 , 𝑃 𝜃 > 0.5 …

we‘d need to know  𝑝 𝜃|𝑦 for all 𝜃 and also  𝑐 = 𝜃׬ 𝐿 𝜃 𝑝(𝜃)

1) Analytical (mathematical formula)

→ Much too complicated, often impossible

2) Numerical (e.g., grid)

→ Effort grows exponentially with #𝜃

→ Computationally too expensive 

Oh no! Same problem as before.

„Curse of 
dimen-

sionality“



Markov Chain Monte Carlo (MCMC) 
sampling

25
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New idea: sampling!

Instead of calculating 𝑝 𝜽 𝑦 , draw random 𝜽 samples.

Many samples where 𝑝 high, few samples where 𝑝 low

→ Sample density proportional to 𝑝 𝜽 𝑦

→ We don‘t need the normalizing constant 𝑐 = 𝑝 𝑦

Posterior is proportional to likelihood x prior

𝑝 𝜽 𝑦 ~ 𝑝 𝑦 𝜽 ⋅ 𝑝 𝜽

𝑝 𝜽 𝑦 =
𝑝 𝑦 𝜽 ⋅ 𝑝(𝜽)

𝑝(𝑦)
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Markov Chain Monte Carlo 

Start with initial 𝜃1
Compute 𝑓 𝜃1 = 𝐿 𝜃1 ⋅ 𝑝 𝜃1

In each step 𝑖 = 2,3,4,… :

• Propose new 𝜃new, e.g. 𝜃new ∼ Normal 𝜃old, 𝜎

Compute 𝑓 𝜃new = 𝐿 𝜃new ⋅ 𝑝 𝜃new

• If 𝑓 𝜃new > 𝑓 𝜃old
→ accept 𝜃𝑖+1 = 𝜃new

• If 𝑓 𝜃new < 𝑓 𝜃old

→ accept 𝜃𝑖+1 = 𝜃new with probability 
𝑓 𝜃new

𝑓 𝜃old
(random draw)

→ otherwise reject 𝜃new

Repeat e.g. 1000 times
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Markov Chain Monte Carlo 

• 𝜃1, 𝜃2, 𝜃3, … , 𝜃1000 are called the „chain“

• They are samples from the underlying

(but mathematically unknown) posterior distribution

• We can calculate empirical quantities

– mean

– standard deviation

– quantiles

– histogram (for visualization)

– probability statements

• Without explicitly knowing the function 𝑝 𝜃 𝑦

• Even don‘t need to save computed values 𝑝(𝜃1 𝑦 , 𝑝(𝜃2 𝑦 ,…
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Markov Chain Monte Carlo 

„Markov“ property: 

each sample 𝜃𝑖 only depends on the previous sample 𝜃𝑖−1

„Chain”:

list of samples 𝜃1, 𝜃2, 𝜃3, … , 𝜃1000

„Monte Carlo“: 

each new sample involves a random draw

Very simple algorithm at its core (few lines of code)

Very sophisticated software to make it efficient
(lots of maths go into good sample proposals) 
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Example

Survival rate: 1 datapoint (7/10), prior beta(2,2)

First sample 𝜃1 = 𝟎. 𝟒

𝑓 𝟎. 𝟒 = dbinom 7,10, 𝟎. 𝟒 ⋅ dbeta 𝟎. 𝟒, 2,2

= 0.061

Propose 𝜃new = 0.6

𝑓 𝟎. 𝟔 = dbinom 7,10, 𝟎. 𝟔 ⋅ dbeta 𝟎. 𝟔, 2,2

= 0.310

𝑓 𝜃new > 𝑓 𝜃old → accept 𝜃2 = 0.6 as next sample
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Example

Survival rate: 1 datapoint (7/10), prior beta(2,2)

Current sample  𝜃2 = 𝟎. 𝟔

𝑓 𝟎. 𝟔 = 0.310

Propose 𝜃new = 𝟎. 𝟓

𝑓 𝟎. 𝟓 = dbinom 7,10, 𝟎. 𝟓 ⋅ dbeta 𝟎. 𝟓, 2,2

= 0.175

𝑓 𝜃new < 𝑓 𝜃old → accept with probabilty 
𝑓 𝜃new

𝑓 𝜃old
=

0.175

0.310
= 0.564

→ random draw with a 56.4% chance 

to accept 𝜃3 = 0.5 as next sample
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Example

Survival rate: 1 datapoint (7/10), prior beta(2,2)

Samples from posterior distribution 𝜃1, 𝜃2, 𝜃3, …

describe probability for estimated survival rate.

Don‘t need to know the full curve 𝑝 𝜽 𝑦 ! 

• Empirical histogram for visualization
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Example

Survival rate: 1 datapoint (7/10), prior beta(2,2)

Samples from posterior distribution 𝜃1, 𝜃2, 𝜃3, …

describe probability for estimated survival rate.

Don‘t need to know the full curve 𝑝 𝜽 𝑦 ! 

• Empirical mean and standard deviation

mean =
1

𝐾
σ𝑖=1
𝐾 𝜃𝑖

sdev =
1

𝐾
σ𝑖=1
𝐾 𝜃𝑖 −mean 2 mean

±1 sdev
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Example

Survival rate: 1 datapoint (7/10), prior beta(2,2)

Samples from posterior distribution 𝜃1, 𝜃2, 𝜃3, …

describe probability for estimated survival rate.

Don‘t need to know the full curve 𝑝 𝜽 𝑦 ! 

• „Credible intervals“

90% of samples between the 5% and the 95% quantiles.

𝑃 𝜃 ∈ 0.42,0.81 = 0.9

„I am 90% sure the survival probability is between 0.42 and 0.81“

90% credible interval

Is called credible 
interval to distingiush 

it from frequentist 
confidence interval
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Example

Survival rate: 1 datapoint (7/10), prior beta(2,2)

Samples from posterior distribution 𝜃1, 𝜃2, 𝜃3, …

describe probability for estimated survival rate.

Don‘t need to know the full curve 𝑝 𝜽 𝑦 ! 

• Probability statements (about hypotheses)

85% of samples larger that a survival rate of 0.5

𝑃 𝜃 > 0.5 = 0.85

„I am 85% sure the survival probability is larger than 0.5“

𝑷 𝜽 > 𝟎. 𝟓 = 𝟎. 𝟖𝟓
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MCMC Demo

https://chi-feng.github.io/mcmc-demo/app.html

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=standard


37

Convergence

• Mathematical theory says that MCMC will eventually

be a good approximation of the posterior distribution

• How many samples are enough? 

• Start with 1000-2000 samples

• Run multiple chains (3-4)

• Visual inspection

• Quantitative measures

P
a
ra

m
e
te

r 
𝜃
2

Parameter 𝜃1
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Convergence

Visual inspection

• Traceplots for each parameter

• Should look like random noise

• Centered around a constant mean

• Chains should look similar

• Like a fuzzy caterpillar!

→ MCMC has converged
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Convergence

Visual inspection

• Traceplots for each parameter

• Should look like random noise

• Centered around a constant mean

• Chains should look similar

• Like a fuzzy caterpillar!

→ MCMC has converged

   

   

   

   

                 

 
 
  

  
  

 
 
      

 

 

 

Iterations

P
a
ra

m
e
te

r 
𝜃 1

Lifar https://shorturl.at/S6uCM

https://shorturl.at/S6uCM
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Convergence

Quantitative measures

• Rhat value („Gelman-Rubin statistic“)

– Compares the variation within and across chains

– Value should be less than 1.1

• n_eff (Number of effective samples)

– Chains usually have a bit of autocorrelation

but it shouldn‘t be too strong

– Small n_eff values indicate a problem

→ MCMC has converged

   

   

   

   

                 

 
 
  

  
  

 
 
      

 

 

 

Iterations3 chains with 1000 samples each
3000 samples (post-warmup)
Rhat = 1.001
n_eff= 1770 

P
a
ra

m
e
te

r 
𝜃 1



Software
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Some history

1700s Bayes‘ theorem, Laplace formalized it

Early 1800s Gauß: least squares, regression

Late 1800s to early 1900s 
Birth of modern statistics. Pearson, Fisher, Neyman … :
max. likelihood, hypothesis testing, design of experiments

Mid to late 1900s MCMC algorithms

2000s Computational tools for MCMC
BUGS, JAGS, Stan …

Today Convenient R interfaces 
brms, rstanarm …

Future

Bayes impractical
Restricted to simple cases 

Frequentism superseded Bayes
More practical in most cases 

Still a niche topic in statistics

Becoming more popular in sciences

Taught in gradschools

Becoming the default
instead of frequentism ??
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Software

All Bayesian software contains:

1) Modeling language 

User must define statistical model:

parameters, likelihood & priors

2) MCMC sampler

Automated algorithm that takes care of sampling
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Bayesian programming languages

+ Maximum flexibility in statistical modeling

+ Total control over every part of the model

— Steep learning curve

— Coding can be time-consuming

JAGS

Was the most popular once, now less and less used

Nimble

Extends JAGS, more flexible

Stan

Very efficient, runs in C++

Can all 
be called 
from R

Nimble

Stan
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+ Model formulation similar to lm or lme4

+ Easy to learn

+ Less coding necessary

+ Handy functions for model analysis (after fitting)

— Limited to pre-defined model types

— „lm“-formulas deceive you into forgetting about model definition

rstanarm

GLMMs only

brms

Much more flexible, becoming quite popular

Both 
automatically 

translate model 
into Stan

> stan_glm(y ~ x,
prior = normal(0,1),
data = dataset)

> brm(y ~ x,
prior = prior(normal(0,1),coef=x),
data = dataset)

Formula-based R packages
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Specialized software (R-packages)

• R-INLA, sdmTMB, → Spatial models

spBayes

• bsam, hmmTMB, → Animal movement

• spOccupancy → Occupancy models

• spAbundance → Abundance models

• blavaan → Structural equation models

• … 

https://pbs-assess.github.io/sdmTMB/

https://github.com/TheoMichelot/hmmTMB

bayesmove

https://pbs-assess.github.io/sdmTMB/
https://github.com/TheoMichelot/hmmTMB


Why Bayesian ?
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Bayesian workflow

1) Research question (hypotheses)

2) Data collection

3) Statistical model

4) Prior distribution choice

5) Model fitting (MCMC)

6) Evaluate model output

7) Quantitative statements on hypotheses

→ Workflow not that different from frequentist statistics.

Revise 
model
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Why Bayesian?

Philosophical answer:

• Frequentism assumes true and fixed underlying parameter values.

• Data are just a sample of the „true“ statistical model.

• Bayesian statistics embraces uncertainty and 

wants to quantify it correctly.

• Observed data are given, model parameters uncertain.

?
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Why Bayesian?

Practical answer:

• Output is more intuitive:

Direct inference on parameters / hypotheses instead of NHST

What does the data tell me about my model?

• Full transparency and control over model and output

• Include prior belief / information

• Parameter regularization may be necessary

• Not limited to a specific toolbox, but full flexibility in modeling 

(especially with Stan or Nimble, but brms also very versatile) 

• Fit complex models with lots of parameters

?
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Why Bayesian?

What are complex models?

• Nonlinear models

• Hierarchical structure, mixed effects

• Combination of multiple, heterogeneous data sources 

and/or models

• Constraints on parameters

• Latent variables 

(occupancy models, animal movement models, 

SEM, HMM, …)

Source: stockcake.com

The Bayesian 3D printer



52

Summary

• There is no such thing as a „Bayesian model“!

• Frequentist and Bayesian stats are different methodologies

for estimating parameters of a statistical model

• Frequentist statistics cannot (mathematically) do direct inference 𝑃 𝜽 𝑦 , 

and requires a (methodological) detour via NHST  𝑃 𝑦 𝜽 = 𝟎

• Bayesian statistics can (conceptually) do direct inference 𝑃 𝜽 𝑦 , 

but requires a (computational) detour via MCMC
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