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About me

• Reseacher & Statistical Consultant

• Quantitative Ecologist

• Started out as a mathematician

• Main research interests:

– Statistical methods for process-based models

– Population & community dynamics

– Species interactions, functional responses
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New course! 
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Target audience

• You have used R before

• You have just a little bit of stats experience

Or:

• You have some stats experience, 
but not in Bayesian stats

Or:

• You have some Bayesian stats experience, 
but not with the brms package Image by storyset on Freepik
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Course goals

• Building blocks of statistics modeling

Think in terms of models, not tests

• Revision of classical models: 

Learn something useful even if you
want to stick to frequentist stats.

• Basic understanding of Bayesian statistics

• Write code with the brms package

• Interpret model output & statistical inference

→ Analyze your own datasets

Image by storyset on Freepik
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Contents

1. Statistical modeling

2. Bayesian principles

3. Prior and posterior distributions

4. Linear models

5. Generalized linear models

6. Mixed effects models

7. Stan introduction

8. Conclusions + questions

→ Every lesson includes a lecture and a practical part. 

There are small exercises for self-study, solutions in github
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This lecture

Review: probability distributions

What is a statistical model?

Probability and the likelihood function

Maximum likelihood estimation
(as preparation for Bayesian statistics)



Review: Probability distributions
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Discrete distribution

• Example: number of individuals from a population

of 𝑁 = 10 that survive the winter

• 𝑦 discrete and bounded variable with outcomes 0, 1, 2, …, 10 

• Average survival probability 𝜃 = 0.6 (60%)

• Binomial distribution:     𝑦 ~ Binomial(𝑁, 𝜃)

random
variable

„distributed as“ parameters:

size 𝑁
probability 𝜃
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Discrete distribution

• Binomial distribution:     𝑦 ~ Binomial(𝑁, 𝜃)

• Probability function 𝑃 𝑦 𝜃 = 𝑁
𝑦

𝜃𝑦(1 − 𝜃)𝑁−𝑦

calcutates probability of each possible outcome

for a fixed set of parameters (𝑁 = 10, 𝜃 = 0.6)

• No need to memorize the equation. Use R:

> p = dbinom(y,size=10,prob=0.6)

• Draw random samples from this distribution

> y = rbinom(1,size=10,prob=0.6)
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Discrete distribution

• Probabilities always sum up to 1:

𝑃 𝑦 = 0 + 𝑃 𝑦 = 1 +⋯+ 𝑃 𝑦 = 10 = 1

• Mean 𝜇 = 𝑁 ⋅ 𝑝 = 0.6 ⋅ 10 = 6

(average outcome if experiment is repeated often)

• Compute probabilities of events, for example

𝑃 𝑦 = 6 = 0.251

𝑃 𝑦 ≥ 6 = 𝑃 𝑦 = 6 +⋯+ 𝑃 𝑦 = 10 = 0.633

𝑃 4 ≤ 𝑦 ≤ 8 = 𝑃 𝑦 = 4 +⋯+ 𝑃 𝑦 = 8 = 0.899
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Continuous distribution

• Example: body mass of adult deer

• 𝑦 can take any value (continuous) 

• Average body mass 𝜇 = 100 [𝑘𝑔]

• Standard deviation 𝜎 = 10 (spread)

• Normal distribution:     𝑦 ~ Normal(𝜇, 𝜎)

random
variable

„distributed as“ parameters:

mean 𝜇
standard deviation 𝜎
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Continuous distribution

• Normal distribution:     𝑦 ~ Normal(𝜇, 𝜎)

• 𝑝 𝑦 𝜇, 𝜎 =
1

2𝜋𝜎2
𝑒
−

𝑦−𝜇 2

2𝜎2 is the

probability density function of each possible

outcome 𝑦 for a fixed set of parameters (𝜇 = 100, 𝜎 = 10)

• Mean 𝜇 and standard deviation 𝜎

(average outcome if experiment is repeated often)
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Continuous distribution

• Normal distribution:     𝑦 ~ Normal(𝜇, 𝜎)

• 𝑝 𝑦 = 95.0 𝜇, 𝜎 is not the probability for 𝑦 = 95.0

For continuous distributions, prob. of an exact value is zero!

(see next slide)

• No need to memorize the equation. Use R:

> p = dnorm(y,mean=100,sd=10)

• Draw random samples from this distribution

> y = rnorm(1,mean=100,sd=10)
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Continuous distribution

• Probabilities always integrate to 1 (area under the curve):

𝑝 𝑦 𝜇, 𝜎 𝑑𝑦 = 1 for any 𝜇, 𝜎

• Compute probabilities of an interval, for example

𝑃 𝑦 ≤ 110 = ∞−
110

𝑝 𝑦 100,10 𝑑𝑦 = 0.841

> pnorm(110,mean=100,sd=10)

• 𝑃 90 ≤ 𝑦 ≤ 110 = 90
110

𝑝 𝑦 100,10 𝑑𝑦 = 0.682

> pnorm(110,mean=100,sd=10)-pnorm(90,mean=100,sd=10) 
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Summary: distributions

A random variable 𝑦 has a distribution

→ It has a known function to calculate probabilities

Discrete variable: „probability mass function“ 

• Assings actual probability to every single value

• Probabilities sum up to 1

Continuous variable: „probability density function“ 

• Assings probability density to every single value

• Actual probability of an interval = integral over density

• Density integrates to 1



Statistical modeling
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Why we need models

• Nature is complex. We need to simplify!

• Models are (mathematical) abstractions from nature.

• Explain patterns observed in nature

(associations, trends, differences, …)

• Make quantitative statements.

→ Models can make sense out of your data! 
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Prediction and inference

• Bring model predictions in correspondance with observed data

Model fitting: estimate model parameters

Model selection: choose between different models

• Inference: What does the data tell me about the model (e.g. positive trend)?

Model Data / Nature

Does model
describe data well?
→ prediction

Statements about
processes / hypotheses

→ inference
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Statistical model: building blocks

𝑌
𝑋1

𝑋2

𝜀

Predictor
Variable(s)

Response
Variable

Error

Deterministic
part

Stochastic
part

• Model the process that generates the data:

• We want to learn the association of a single response variable 𝑌
with one or more predictor variables 𝑋1, 𝑋2, … 

• Predictors can be categorical (factor, e.g. „warm“ vs „cold“ treatment)

or continuous (e.g. exact temperature values 11.0∘C, 13.9∘C, 12.1∘C,…)
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Statistical model: building blocks

𝑌
𝑋1

𝑋2

𝜀

Predictor
Variable(s)

Response
Variable

Error

Deterministic
part

Stochastic
part

• Deterministic part: 
Prediction model, e.g. mean regression line

• Stochastic part:
The prediction model cannot explain response perfectly, include random error

• Deterministic and stochastic parts both have parameters (e.g. effect sizes)
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Example: linear regression

Example: linear relationship between

age 𝑥 and body mass 𝑦 of sea turtles

Deterministic part: 𝜇 𝑥 = 𝑎 + 𝑏 ⋅ 𝑥

Stochastic part: 𝑦 ~ Normal(𝜇, 𝜎)

Parameters: 𝑎 intercept 

𝑏 slope 

𝜎 standard deviation

Probably a 
simplification!

Connects the
det. model to

the data
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Example: linear regression

Data: independent observations
(𝑥1, 𝑦1), (𝑥2, 𝑦2)… (𝑥𝑛, 𝑦𝑛)

Deterministic part: 𝜇𝑖 = 𝑎 + 𝑏 ⋅ 𝑥𝑖

Stochastic part: 𝑦𝑖 ~ Normal(𝜇𝑖 , 𝜎)

Can be rewritten: 𝑦𝑖 = 𝜇𝑖 + 𝜀𝑖
𝜀𝑖 ~ Normal(0, 𝜎)

𝜀𝑖 residuals (difference between pred. and obs.)
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Example: linear regression

Question:

Do datapoints 𝑦1…𝑦𝑛 need to come from

a joint normal distribution?

Answer:

No, assumption not about the response values 𝑦𝑖 !!!

Response 𝑦𝑖 has shifting mean: 𝜇𝑖

Assumption is about the residuals 𝜀𝑖,

they have a joint zero mean and joint sdev 𝜎
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Assumptions in linear regression

1. Independent observations.

Systematic differences in 𝑦 are because of 𝑥 !

2. Trend of 𝑦 follows (linear) prediction model

𝜇 𝑥 = 𝑎 + 𝑏 ⋅ 𝑥

3. Residuals follow normal distribution

𝜀 ~ Normal 0, 𝜎

4. Constant variance (standard deviation) 

across whole range of 𝑥
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Assumptions in linear regression

1. Independent observations.

Systematic differences in 𝑦 are because of 𝑥 !

2. Trend of 𝑦 follows (linear) prediction model

𝜇 𝑥 = 𝑎 + 𝑏 ⋅ 𝑥

3. Residuals follow normal distribution

𝜀 ~ Normal 0, 𝜎

4. Constant variance (standard deviation) 

across whole range of 𝑥

Mixed effects / hierarchical
models can account for
grouping factors like „plot“

Generalized linear models, or
even nonlinear models allow
a wide range of trends

Choose other residual 

distributions to model 𝑦
(e.g. Poisson for count)

Other distributions with non-
constant variance available
(e.g. for overdispersion)

Beyond linear models
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Statistical modeling

There is no such thing as a „Bayesian model“!

Statistical model: 

• Deterministic part

• Stochastic part

• Model assumptions

2 approaches to model fitting / parameter estimation / 
statements about hypotheses:

• Frequentist statistics

• Bayesian statistics

They are different in the way model parameters
are computed and how their uncertainty is treated.



Maximum likelihood estimation
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How to estimate parameters?

Best model fit:

𝒂 = 𝟏. 𝟒𝟏 𝒃 = 𝟏. 𝟗𝟒
Worse fit:

𝒂 = 𝟏. 𝟓 𝒃 = 𝟏. 𝟎
Really bad fit:

𝒂 = 𝟐. 𝟎 𝒃 = −𝟏. 𝟎
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How to estimate parameters?

• Ordinary least-squares

• Find intercept 𝒂 and slope 𝒃 that

minimize σ𝑖=1
𝑛 𝑦𝑖 − 𝝁𝒊

2 (sum of squares)

• Works perfectly for linear models

• Formulas for intercept and slope(s) available!

• But what about other models (GLM, LMM, …)?

• Other measure of model fit?

• Stochastic part of the model → Probability distribution of datapoints



37

The likelihood function

Example: survival rate

Statistical model: deterministic part: 𝜇 = 𝜃

stochastic part: 𝑦 ~ Binomial(𝑁, 𝜃)

Probability: data unknown, parameters given

• The average survival rate is 𝜃 = 0.6

• How many of the 10 individuals will survive the winter?

Likelihood: parameters unknown, data given

• Last winter, 6 out of 10 individuals survived

• What is the average survival rate?

→ Likelihood is the reverse of probability !
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The likelihood function

Model Data

Prediction

Inference

Probability

𝑃 𝒚 𝜃

Likelihood

𝐿 𝜽 𝑦 = 𝑃 𝑦 𝜽
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The likelihood function

Probability is function for unknown data

𝑃 𝒚 𝜃 = 𝑁
𝒚
𝜃𝒚(1 − 𝜃)𝑁−𝒚

𝑃 𝒚 𝜃 = 10
𝒚

0.6𝒚(1 − 0.6)10−𝒚

Likelihood is function for unknown parameters

𝐿 𝜽 𝑦 = 𝑁
𝑦

𝜽𝑦(1 − 𝜽)𝑁−𝑦

𝐿 𝜽 𝑦 = 10
6
𝜽6(1 − 𝜽)10−6

𝜃 = 0.6

𝑦 = 6 (out of 𝑁 = 10)

unknown given

unknown given
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Maximum likelihood estimation

Given: 

Data 𝑦 and statistical model

→ Defines likelihood function 𝐿 𝜽 𝑦 = 𝑝(𝑦|𝜽)

How likely did a parameter value 𝜽 produce

the observed data?

Find the value for which the likelihood is highest!

→ We get a point estimate 𝜽∗

„Maximum likelihood estimate“
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Maximum likelihood estimation

Now: multiple observations

Survival: 𝑦1 = 6/10, 𝑦2 = 14/20, 𝑦3 = 8/15

𝐿(𝜃|𝑦1)

𝐿(𝜃|𝑦2)

𝐿(𝜃|𝑦3)

Joint likelihood function =
product of each datapoint‘s lik.fun. 

𝐿 𝜃 𝑦 = 𝐿 𝜃 𝑦1 ⋅ 𝐿 𝜃 𝑦2 ⋅ 𝐿 𝜃 𝑦3

𝐿 𝜃 𝑦1 ⋅ 𝐿 𝜃 𝑦2 ⋅ 𝐿 𝜃 𝑦3
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Maximum likelihood estimation

Example: linear regression

Deterministic part: 𝜇 𝑥 = 𝒂 + 𝒃 ⋅ 𝑥

Stochastic part: 𝑦 ~ Normal(𝜇, 𝝈)

3 parameters: intercept 𝑎, slope 𝑏, sdev 𝜎

𝐿 𝒂, 𝒃, 𝝈 𝑦 = 𝑝 𝑦 𝑎, 𝑏, 𝜎

𝐿 𝒂, 𝒃, 𝝈 𝑦 = 𝑝 𝑦1 𝑎, 𝑏, 𝜎 ⋅ … ⋅ 𝑝 𝑦𝑛 𝑎, 𝑏, 𝜎

Now it‘s getting more complicated:

Find 𝒂, 𝒃, 𝝈 that maximizes 𝐿 𝒂, 𝒃, 𝝈 𝑦
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Maximum likelihood estimation

1) Analytical solution: find a mathematical formula for 𝜃

→ Works for linear models with normal distribution

→ But too complicated for most applications

2) Brute force (e.g. grid)

→ Effort grows exponentially with number of parameters

→ Too expensive for most applications

3) Numerical optimization

→ Iterative algorithm that tries to improve 𝐿 𝜃 𝑦

in every step until no further improvement is possible
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Beyond point estimates ?

Why can‘t we use the likelihood for
probability statements on the parameters ? 

𝐿 𝜽 𝑦 is not a probability density function

for parameters 𝜽 !

𝐿 𝜽 𝑦 ≠ 1 (area under the curve)

E.g. 0.4
0.8
𝐿 𝜽 𝑦 is a meaningless value.

It does not describe 𝑃 0.4 < 𝜽 < 0.8 !

But likelihood tells us that, e.g., survival rate of
0.3 is less likely than 0.5. Can we use that?

≠ 1

? ? ?
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Beyond point estimates ?

𝐿𝑛𝑒𝑤 𝜽 𝑦 =
𝐿(𝜽|𝑦)

𝑐
scale by constant 𝑐 = 𝐿 𝜃 𝑦

 𝐿𝑛𝑒𝑤 𝜽 𝑦 = 1 (area under the curve)

Probability statements would be possible!

E.g. 0.4
0.8
𝐿𝑛𝑒𝑤 𝜽 𝑦 = 𝑃 0.4 < 𝜽 < 0.8

But we arrived at the same problem: 

Can‘t compute the integral 𝑐 = 𝐿 𝜽|𝑦

It‘s not practical. Solution in next lecture!

𝑳𝒏𝒆𝒘 (𝜽)

𝑳(𝜽)



Summary
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Summary MLE

• Every statistical model has a likelihood function, 
defined by distribution of the stochastic part, 
that connects deterministic part to data
(prob of the data, given a fixed parameter)

• Find model parameters such that observed data
is most likely

• Maximum likelihood estimation → point estimates

• Does not allow probability statements

about the model parameters 𝑃 𝜃 𝑦)

→ The frequentist „short cut“:
Null hypothesis significance testing (NHST)

𝜇𝑖 = 𝑎 + 𝑏 ⋅ 𝑥𝑖
𝑦𝑖 ~ Normal(𝜇𝑖 , 𝜎)
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Further reading
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