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Target audience

* You have used R before

* You have just a little bit of stats experience
Or:

* You have some stats experience,
but not in Bayesian stats

Or:

* You have some Bayesian stats experience,
but not with the brms package




Course goals

 Building blocks of statistics modeling
Think in terms of models, not tests

« Revision of classical models:

Learn something useful even if you
want to stick to frequentist stats.

» Basic understanding of Bayesian statistics

Write code with the brms package

Interpret model output & statistical inference

- Analyze your own datasets
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Conclusions + questions

- Every lesson includes a lecture and a practical part.

There are small exercises for self-study, solutions in github



This lecture

Review: probability distributions
What is a statistical model?
Probability and the likelihood function

Maximum likelihood estimation
(as preparation for Bayesian statistics)



Review: Probability distribut



Discrete distribution

Example: number of individuals from a population

of N = 10 that survive the winter

y discrete and bounded variable with outcomes O, 1, 2, ..., 10

- Average survival probability 8 = 0.6 (60%)

Binomial distribution:  y ~ Binomial(N, )

/N

random  ,distributed as“ parameters:
variable size N
probability 6




Discrete distribution

« Binomial distribution:  y ~ Binomial(N, )

« Probability function P(y|@) = (1;) 0Y(1— )N
calcutates probability of each possible outcome

for a fixed set of parameters (N = 10,6 = 0.6)

* No need to memorize the equation. Use R:

> p = dbinom(y,size=10,prob=0.6)

« Draw random samples from this distribution

>y = rbinom(1,size=10,prob=0.6)

Probability P(y)
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Discrete distribution

» Probabilities always sum up to 1:

Py=0)+Ply=1D+-+Py=10)=1

*Meanu=N-p=06-10=06

(average outcome if experiment is repeated often)

« Compute probabilities of events, for example
P(y =6) =0.251
Ply=6)=P(y=6)+:-+P(y=10) = 0.633
P4<y<8)=P(y=4)+:-+P(y=8)=0.899

Probability P(y)
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Discrete distribution

» Probabilities always sum up to 1:
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Discrete distribution

» Probabilities always sum up to 1:

Py=0+Ply=1)+-+Ply=10)=1

*Meanu=N-p=06-10=06

(average outcome if experiment is repeated often)

« Compute probabilities of events, for example
P(y =6) =0.251
Ply=6)=P(y=6)+--+P(y=10) = 0.633
P4<y<8)=Py=4)+:-+P(y=8)=0.899

Probability P(y)
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Discrete distribution

» Probabilities always sum up to 1:

Py=0+Ply=1)+-+Ply=10)=1

*Meanu=N-p=06-10=06

(average outcome if experiment is repeated often)

« Compute probabilities of events, for example
P(y =6) =0.251
Ply=6)=P(y=6)+:-+P(y=10) = 0.633
P4<y<8)=P(y=4)+--+P(ly=8)=0.899

Probability P(y)
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Continuous distribution

« Example: body mass of adult deer

y can take any value (continuous)

Average body mass  u = 100 [kg]

Standard deviation o = 10 (spread)

« Normal distribution:  y ~ Normal(y, o)

/\ N\

random ,distributed as® parameters:
variable mean u

standard deviation o

15



Continuous distribution

N L 3

« Normal distribution: ~ y ~ Normal(y, o) 2
1 _M 8 ]

¢ p()’l.u; O-) = We 262 s the o

probability density function of each possible

Density p(y)
0.02
|

outcome y for a fixed set of parameters (u = 100,06 = 10)

0.01
|

« Mean u and standard deviation o

(average outcome if experiment is repeated often)

0.00
|

| | | | |
60 80 100 120 140

Body mass y [kg]



Continuous distribution

0.04
1

« Normal distribution:  y ~ Normal(u, o)

« p(y = 95.0|y, o) is not the probability for y = 95.0

0.03
|

For continuous distributions, prob. of an exact value is zero!

(see next slide)

Density p(y)
0.02
|

* No need to memorize the equation. Use R:

S -
> p = dnorm(y,mean=100,sd=10) ©

« Draw random samples from this distribution § = | | | |
>y = rnorm(1l,mean=100,sd=10) 60 80 100 120 140

Body mass y [kg]
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Continuous distribution

» Probabilities always integrate to 1 (area under the curve):

0.04
1

[plu, 0)dy =1 forany o

0.03
|

« Compute probabilities of an interval, for example

Density p(y)
0.02
|

P(y < 110) = [ " p(y/100,10)dy = 0.841
> pnorm(110,mean=100,sd=10) S
+ P(90 <y <110) = [1'°p(y]100,10)dy = 0.682 s § | | | |

60 80 100 120 140
> pnorm(110,mean=100,sd=10)-pnorm(90,mean=100,sd=10)
Body mass y [kg]



Continuous distribution

» Probabilities always integrate to 1 (area under the curve):

0.04
1

fp(ylu, o)dy =1 forany u,o

0.03
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Continuous distribution

» Probabilities always integrate to 1 (area under the curve):

0.04
1

fp(ylu, o)dy =1 forany u,o

0.03
|

« Compute probabilities of an interval, for example

Density p(y)
0.02
|

P(y < 110) = [ " p(y/100,10)dy = 0.841
> pnorm(110,mean=100,sd=10) S
+ P(90 <y <110) = [}'°p(y]100,10)dy = 0.682 s § | | | |

60 80 100 120 140
> pnorm(110,mean=100,sd=10)-pnorm(90,mean=100,sd=10)
Body mass y [kg]
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Summary: distributions

A random variable y has a distribution

- It has a known function to calculate probabilities

Discrete variable: ,probability mass function®
« Assings actual probability to every single value

« Probabilities sum up to 1

Continuous variable: ,probability density function®
« Assings probability density to every single value
« Actual probability of an interval = integral over density

* Density integrates to 1

Probability P(y)

Density p(y)

000 0.05 0.10 0.15 020 0.25
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Statistical modeling



Why we need models

« Nature is complex. We need to simplify!
« Models are (mathematical) abstractions from nature.

« Explain patterns observed in nature

(associations, trends, differences, ...)

+ Make quantitative statements.

- Models can make sense out of your datal!

23




Prediction and inference

Model Data / Nature

Does model
describe data well?
- prediction

Statements about
processes / hypotheses
- inference

« Bring model predictions in correspondance with observed data
Model fitting: estimate model parameters

Model selection: choose between different models

- Inference: What does the data tell me about the model (e.g. positive trend)? o



Statistical model: building blocks

Predictor Response
Variable(s) Variable

=00

Deterministic Stochastic
part part

Error

« Model the process that generates the data:

« We want to learn the association of a single response variable Y
with one or more predictor variables X1, X2, ...

« Predictors can be categorical (factor, e.g. ,warm" vs ,cold" treatment)
or continuous (e.g. exact temperature values 11.0°C,13.9°C,12.1°C, ...)

25



Statistical model: building blocks

Predictor Response
Variable(s) Variable Error

=00

Deterministic Stochastic
part part

* Deterministic part:
Prediction model, e.g. mean regression line

« Stochastic part:
The prediction model cannot explain response perfectly, include random error

« Deterministic and stochastic parts both have parameters (e.g. effect sizes)

26



Example: linear regression

Example: linear relationship between
age x and body mass y of sea turtles

N Probabl
Deterministic part: px) =a+b-x <+— g Dification
. Connects the
Stochastic part: y ~Normal(i,0) <—  det. model to
the data
Parameters: a intercept
| b slope

o standard deviation

27




Example: linear regression

Example: linear relationship between
age x and body mass y of sea turtles

<r
Deterministic part: ux)=a+b-x <+ Si,':{&?ﬁcb;ﬁ:m
N
. Connects the
Stochastic part: y ~Normal(i,0) <—  det. model to
the data
o
Parameters: a intercept
b slope

o standard deviation | I I I I I T



Example: linear regression

Data: independent observations
(xl' yl)' (XZ' yZ) (xn' yn)

<
Deterministic part: Ui=a+b-x;
- o~
Stochastic part: y; ~ Normal(y;, o)
Can be rewritten: Vi = Ui + & °

g ~ Normal(0, o)

g; residuals (difference between pred. and obs.)



Example: linear regression

Question:
Do datapoints y; ...y, need to come from
a joint normal distribution?

Answer: o~
No, assumption not about the response values y; !!! =
Response y; has shifting mean: y;

o
Assumption is about the residuals ¢;,
they have a joint zero mean and joint sdev o o

[ I [ I [ [ I
% -5 10 -05 00 05 10 15

Residuals e



Assumptions in linear regression

1. Independent observations.

Systematic differences in y are because of x ! .

2. Trend of y follows (linear) prediction model

>, N
ux)=a+>b-x
3. Residuals follow normal distribution °
¢ ~Normal(0, o)
o
[ I [ I [ [ [
4. Constant variance (standard deviation) 45 10 -05 00 05 10 15

across whole range of x X



Assumptions in linear regression

1. Independent observations.

Systematic differences in y are because of x !

2. Trend of y follows (linear) prediction model

ux)=a+>b-x

3. Residuals follow normal distribution

¢ ~Normal(0, o)

4. Constant variance (standard deviation)

across whole range of x

Beyond linear models

Mixed effects / hierarchical
models can account for
grouping factors like ,plot"

Generalized linear models, or
even nonlinear models allow
a wide range of trends

Choose other residual
distributions to model y
(e.g. Poisson for count)

Other distributions with non-
constant variance available
(e.g. for overdispersion)



Statistical modeling

There is no such thing as a , Bayesian model"!

Statistical model:
» Deterministic part
» Stochastic part
» Model assumptions

2 approaches to model fitting / parameter estimation /
statements about hypotheses:

* Frequentist statistics
+ Bayesian statistics

They are different in the way model parameters
are computed and how their uncertainty is treated.

33




Maximum likelihood estima



How to estimate parameters?

15 -10 -05 00 05 10 15 15 10 -05 00 05 10 15
X X

Best model fit: Worse fit:

a=1.41 b=1.94 a=15 b=1.0

Really bad fit:
a=2.0 b=-1.0
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How to estimate parameters?

* Ordinary least-squares

<r
« Find intercept a and slope b that

minimize Y1-,(y; — p;)®> (sum of squares) > o

« Works perfectly for linear models 5
« Formulas for intercept and slope(s) available!

o

I I [ I | I I
-15 10 -05 00 05 1.0 1.5

« But what about other models (GLM, LMM, ...)? X

« Other measure of model fit?

« Stochastic part of the model > Probability distribution of datapoints



The likelihood function

Example: survival rate

Statistical model: deterministic part: u =26
stochastic part: y ~ Binomial(N, 6)

Probability: data unknown, parameters given
« The average survival rate is 8 = 0.6
« How many of the 10 individuals will survive the winter?

Likelihood: parameters unknown, data given
« Last winter, 6 out of 10 individuals survived
« What is the average survival rate?

- Likelihood is the reverse of probability !

37



The likelihood function

Prediction

Probability
P(y|6)

Likelihood
L(Oly) = P(y|0)

Inference

38



The likelihood function

Probability is function for unknown data S § _
o
unknown  given %‘ N
. "
PO = (}) 071 -0 g - I
g ___. B_

=(1y0)0_6y(1_0_6)1o-y 1 2 3 4 5 6 7 8 9 10

y survived out of 10

Likelihood is function for unknown parameters =~ & 177 6 (out of N'-=10)
~ o
5 i
unknown  given § °
N T oS |
L@ly) = (¥) v — o)V =
y (o]
O. —
10N a6 1 o106 s | | | | T
= () -0) 00 02 04 06 08 10

40
Survival rate 0




Maximum likelihood estimation

Given:
Data y and statistical model

- Defines likelihood function L(8|y) = p(y|0)

How likely did a parameter value @ produce
the observed data?

Find the value for which the likelihood is highest!

- We get a point estimate 0°

,Maximum likelihood estimate"

Likelihood L(8)

0.00 005 010 0.15 020 0.25

Survival rate 6
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Maximum likelihood estimation

Now: multiple observations

Survival: y; = 6/10, y, = 14/20, y; = 8/15

. =)
s | L(Oly1) —> -
S / 8

7 <
e ] 2
s L(6ly2) =
§_I T T T

00 02 04 06 08 10 L(9|y3

Joint likelihood function =
product of each datapoint's lik.fun.

2 j
00 02 04 06 08'

00 02 04 06 08 10

Lly) = L(Oly1) - L(Bly2) - L(B]ys)

0.002 0.004 0.006

0.000

L(@ly1) - L(Bly,) - L(Oly3)

Survival rate 6
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Maximum likelihood estimation

Example: linear regression

Deterministic part: ux)=a+hb-x

Stochastic part: y ~ Normal(y, o) >

3 parameters: intercept a, slope b, sdev o

L(a,b,oly) = p(yla,b,o) o
=pWyla,b,0) - ...-p(y,la, b, o) 15 10 -05 00 05 10 15

Now it's getting more complicated:

Find a, b, ¢ that maximizes L(a, b, a|y)



Maximum likelihood estimation

1) Analytical solution: find a mathematical formula for 6
- Works for linear models with normal distribution

- But too complicated for most applications

2) Brute force (e.g. grid)
- Effort grows exponentially with number of parameters

- Too expensive for most applications

3) Numerical optimization

- Iterative algorithm that tries to improve L(8|y) N

in every step until no further improvement is possible

o1



Beyond point estimates ?

Why can't we use the likelihood for ) § -
probability statements on the parameters ? ;_.,' |
(@]
2 =4 =1
L(B|y) is not a probability density function e °
= _
for parameters 0 ! s |
o | | | | | |
[ L(B]y) # 1 (area under the curve) 0.0 0.2 0.4 0.6 0.8 1.0
0.8 . . |
E.g. J,, L(8y) is a meaningless value. 5 S -
It does not describe P(0.4 <6 < 0.8) ! 3 <
g o
But likelihood tells us that, e.g., survival rate of 2 © 777
0.3 is less likely than 0.5. Can we use that? = =
o
S i | | | |

0.0 0.2 0.4 0.6 0.8 1.0

Survival rate 0 45



Beyond point estimates ?

Lnew (0|Y) =

L(O
% scale by constant ¢ = [ L(8]y)

[ Lypew(@ly) = 1 (area under the curve)

Probability statements would be possible!

0.8
E.g. f0_4 Lyew(@ly) = P(0.4 < 6 <0.8)

But we arrived at the same problem:
Can't compute the integral ¢ = [ L(0]y)

It's not practical. Solution in next lecture!

Likelihood L(B)

1.5 20 25

1.0

0.5

0.0

Survival rate 6
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Summary



Summary MLE

« Every statistical model has a likelihood function,
defined by distribution of the stochastic part,
that connects deterministic part to data
(prob of the data, given a fixed parameter)

« Find model parameters such that observed data
is most likely

« Maximum likelihood estimation - point estimates

» Does not allow probability statements
about the model parameters P(8|y)

- The frequentist ,short cut":
Null hypothesis significance testing (NHST)

Ui=a+b-x;
y; ~ Normal(y;, o)
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